码迷,mamicode.com
首页 > 其他好文 > 详细

LightOJ 1110 An Easy LCS LCS路径输出

时间:2014-08-19 12:59:35      阅读:604      评论:0      收藏:0      [点我收藏+]

标签:acm   lcs   dp   

 点击打开链接题目链接

1110 - An Easy LCS
Time Limit: 2 second(s) Memory Limit: 32 MB

LCS means ‘Longest Common Subsequence‘ that means two non-empty strings are given; you have to find the Longest Common Subsequence between them. Since there can be many solutions, you have to print the one which is the lexicographically smallest. Lexicographical order means dictionary order. For example, ‘abc‘ comes before ‘abd‘ but ‘aaz‘ comes before ‘abc‘.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a blank line. The next two lines will contain two strings of length 1 to 100. The strings contain lowercase English characters only.

Output

For each case, print the case number and the lexicographically smallest LCS. If the LCS length is 0 then just print ‘:(‘.

Sample Input

Output for Sample Input

3

 

ab

ba

 

zxcvbn

hjgasbznxbzmx

 

you

kjhs

Case 1: a

Case 2: zxb

Case 3: :(

 

开一个三维的ans数组存储每一次的ans
#include<cstdio>
#include<cstring>
int dp[110][110];
char str1[110],str2[110],ans[110][110][110];
int main()
{
    int t,i,j,k;
    int l1,l2;
    while(scanf("%d",&t)!=EOF)
    {
        for(k=1;k<=t;k++)
        {
            scanf("%s",str1+1);
            scanf("%s",str2+1);
            l1=strlen(str1+1);
            l2=strlen(str2+1);
            memset(dp,0,sizeof(dp));
            memset(ans,0,sizeof(ans));
            for(i=1;i<=l1;i++)
            {
                for(j=1;j<=l2;j++)
                {
                    if(str1[i]==str2[j])
                    {
                        dp[i][j]=dp[i-1][j-1]+1;
                        strcpy(ans[i][j],ans[i-1][j-1]);
                        ans[i][j][dp[i-1][j-1]]=str1[i];
                        ans[i][j][dp[i][j]]='\0';
                    }
                    else if(dp[i-1][j]>dp[i][j-1])
                    {
                        strcpy(ans[i][j],ans[i-1][j]);
                        dp[i][j]=dp[i-1][j];
                    }
                    else if(dp[i-1][j]<dp[i][j-1])
                    {
                        strcpy(ans[i][j],ans[i][j-1]);
                        dp[i][j]=dp[i][j-1];
                    }
                    else
                    {
                        dp[i][j]=dp[i][j-1];
                        if(strcmp(ans[i][j-1],ans[i-1][j])>0)
                        {
                            strcpy(ans[i][j],ans[i-1][j]);
                        }
                        else
                        {
                            strcpy(ans[i][j],ans[i][j-1]);
                        }
                    }
                }
            }
            printf("Case %d: ",k);
            if(dp[l1][l2]==0)
            {
                puts(":(");
            }
            else
            {
                puts(ans[l1][l2]);
            }
        }
    }
    return 0;
}



LightOJ 1110 An Easy LCS LCS路径输出,布布扣,bubuko.com

LightOJ 1110 An Easy LCS LCS路径输出

标签:acm   lcs   dp   

原文地址:http://blog.csdn.net/qq_16843991/article/details/38678521

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!