永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。
输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000
对于 100%的数据 n≤100000,m≤n,q≤300000
对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 100011;
int n,m,q,w[MAXN],pos[MAXN],F[MAXN],root[MAXN],father[MAXN];
int size[MAXN],tr[MAXN][2],dui[MAXN],head,tail;
char ch[12];
inline int find(int x){ if(F[x]!=x) F[x]=find(F[x]); return F[x]; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<‘0‘||c>‘9‘) && c!=‘-‘) c=getchar();
if(c==‘-‘) q=1,c=getchar(); while (c>=‘0‘&&c<=‘9‘) w=w*10+c-‘0‘,c=getchar(); return q?-w:w;
}
inline void rotate(int x,int &rt){
int y=father[x],z=father[y]; int l=(tr[y][1]==x),r=l^1;
if(y==rt) rt=x; else tr[z][(tr[z][1]==y)]=x;
father[x]=z; father[y]=x;
tr[y][l]=tr[x][r]; father[tr[x][r]]=y; tr[x][r]=y;
size[y]=size[tr[y][0]]+size[tr[y][1]]+1;
size[x]=size[tr[x][0]]+size[tr[x][1]]+1;
}
inline void splay(int x,int &rt){
int y,z;
while(x!=rt) {
y=father[x]; z=father[y];
if(y!=rt) {
if((tr[y][0]==x)^(tr[z][0]==y)) rotate(x,rt);//不同边转自己
else rotate(y,rt);//同边转父亲
}
rotate(x,rt);
}
}
inline void insert(int x,int &rt,int fa){
if(rt==0) { rt=x; father[x]=fa; return ; }
size[rt]++;
if(w[x]<=w[rt]) insert(x,tr[rt][0],rt);
else insert(x,tr[rt][1],rt);
}
inline void merge(int x,int y){
if(x==y) return ; if(size[root[x]]>size[root[y]]) swap(x,y);
F[x]=y; head=tail=0; dui[++tail]=root[x]; int u;
while(head<tail) {
head++; u=dui[head];
if(tr[u][0]) dui[++tail]=tr[u][0];
if(tr[u][1]) dui[++tail]=tr[u][1];
insert(u,root[y],0);
splay(u,root[y]);
}
}
inline int kth_query(int rt,int k){
int u=rt;
while(1) {
if(k<=size[tr[u][0]]) u=tr[u][0];
else if(size[tr[u][0]]+1==k) return w[u];
else k-=size[tr[u][0]]+1,u=tr[u][1];
}
}
inline void work(){
n=getint(); m=getint(); int x,y;
for(int i=1;i<=n;i++) w[i]=getint();
for(int i=1;i<=n;i++) root[i]=i,F[i]=i,pos[w[i]]=i,size[i]=1;
for(int i=1;i<=m;i++) { x=getint(); y=getint(); merge(find(x),find(y)); }
q=getint();
while(q--) {
scanf("%s",ch); x=getint(); y=getint();
if(ch[0]==‘Q‘) {
if(size[root[find(x)]]<y) { printf("-1\n"); continue; }
printf("%d\n",pos[ kth_query(root[find(x)],y) ]);
}
else merge(find(x),find(y));
}
}
int main()
{
work();
return 0;
}