码迷,mamicode.com
首页 > 其他好文 > 详细

《游戏编程模式》(8)

时间:2017-01-23 19:07:37      阅读:203      评论:0      收藏:0      [点我收藏+]

标签:false   move   str   grid   碎片   rmi   结构体   ati   恢复   

《游戏编程模式》最后一篇,刚从英国玩了一圈,春节又要到啦

 

Chapter 19 对象池

使用固定的对象池重用对象,取代单独地分配和释放对象,达到提升性能和优化内存使用的目的。

使用情境:

  1. 频繁创建销毁对象;
  2. 对象大小基本一致;
  3. 堆上分配内存较慢或可能产生内存碎片;

 

粒子类:

用union节省内存:粒子使用时用live结构体,不使用时用next指针

 1 class Particle
 2 {
 3 
 4 public:
 5   Particle()
 6   : framesLeft_(0)
 7   {} 
 8 
 9   void init(double x, double y,
10             double xVel, double yVel, int lifetime)
11   {
12     x_ = x; y_ = y;
13     xVel_ = xVel; yVel_ = yVel;
14     framesLeft_ = lifetime;
15   } 
16 
17   bool animate()
18   {
19     if (!inUse()) return false;
20 
21     framesLeft_--;
22     x_ += xVel_;
23     y_ += yVel_;
24  
25     return framesLeft_ == 0;
26 }
27 
28   bool inUse() const { return framesLeft_ > 0; }
29 
30   Particle* getNext() const { return state_.next; }
31   void setNext(Particle* next) { state_.next = next; }
32 
33 private:
34   int framesLeft_; 
35 
36   union
37   {
38     // State when it‘s in use.
39     struct
40     {
41       double x, y;
42       double xVel, yVel;
43     } live;
44 
45     // State when it‘s available.
46     Particle* next;
47 
48   } state_;
49 
50 };

粒子对象池:

 1 class ParticlePool
 2 {
 3 
 4 public:
 5   void create(double x, double y,
 6               double xVel, double yVel, int lifetime); 
 7 
 8   void animate()
 9   {
10     for (int i = 0; i < POOL_SIZE; i++)
11     {
12       particles_[i].animate();
13     }
14   } 
15 
16 private:
17   static const int POOL_SIZE = 100;
18   Particle particles_[POOL_SIZE];
19  
20   Particle* firstAvailable_;
21 };
22 
23 ParticlePool::ParticlePool()
24 {
25   // The first one is available.
26   firstAvailable_ = &particles_[0];
27  
28   // Each particle points to the next.
29   for (int i = 0; i < POOL_SIZE - 1; i++)
30   {
31     particles_[i].setNext(&particles_[i + 1]);
32   }
33  
34   // The last one terminates the list.
35   particles_[POOL_SIZE - 1].setNext(NULL);
36 
37 }

构造函数中串起一个链表。

 

创建一个新粒子:

 1 void ParticlePool::create(double x, double y,
 2                           double xVel, double yVel,
 3                           int lifetime)
 4 {
 5   // Make sure the pool isn‘t full.
 6   assert(firstAvailable_ != NULL);
 7  
 8   // Remove it from the available list.
 9   Particle* newParticle = firstAvailable_;
10   firstAvailable_ = newParticle->getNext();
11  
12   newParticle->init(x, y, xVel, yVel, lifetime);
13 }

动画放完放回粒子池:

 1 void ParticlePool::animate()
 2 {
 3   for (int i = 0; i < POOL_SIZE; i++)
 4   {
 5     if (particles_[i].animate())
 6     {
 7       // Add this particle to the front of the list.
 8       particles_[i].setNext(firstAvailable_);
 9       firstAvailable_ = &particles_[i];
10     }
11   }
12 }
  1. 如果对象尺寸大小不一,可以考虑根据对象的尺寸划分大小不同的池,避免过多的内存浪费;
  2. 向对象池请求失败:

(1). 避免;

(2). 不创建了(特效叠加时…);

(3). 清理现存对象(是否会卡);

(4). 增加对象池大小(适当时机再恢复原大小)

 

 

Chapter 20 空间分区

将对象存储在根据位置组织的数据结构中来高效地定位它们。 

你有一组对象(可能还挺多),将对象存储在一个根据对象位置来组织的数据结构中,该数据结构可以让你高效查询位于或靠近某处的对象。当对象位置改变时,更新并继续维护该空间数据对象。

用更复杂的数据结构(空间)来换取大量查询时的性能优化(时间)。

 

Unit类:

 1 class Unit
 2 {
 3   friend class Grid; 
 4 
 5 public:
 6   Unit(Grid* grid, double x, double y)
 7   : grid_(grid),
 8     x_(x),
 9     y_(y)
10   {} 
11 
12   void move(double x, double y);
13  
14 private:
15   double x_, y_;
16   Grid* grid_; 
17 
18   Unit* prev_;
19   Unit* next_;
20 };

Grid类:

 1 class Grid
 2 {
 3 
 4 public:
 5   Grid()
 6   {
 7     // Clear the grid.
 8     for (int x = 0; x < NUM_CELLS; x++)
 9     {
10       for (int y = 0; y < NUM_CELLS; y++)
11       {
12         cells_[x][y] = NULL;
13       }
14     }
15   }
16  
17   static const int NUM_CELLS = 10;
18   static const int CELL_SIZE = 20; 
19 
20 private:
21   Unit* cells_[NUM_CELLS][NUM_CELLS];
22 
23 }; 

cells_是一个双重链表,记录了单元格内的unit链。

 

初始化:找到单位所在的单元格加到链表前面

 1 Unit::Unit(Grid* grid, double x, double y)
 2   : grid_(grid),
 3     x_(x),
 4     y_(y),
 5     prev_(NULL),
 6     next_(NULL)
 7 {
 8   grid_->add(this);
 9 }
10 
11 void Grid::add(Unit* unit)
12 {
13   // Determine which grid cell it‘s in.
14   int cellX = (int)(unit->x_ / Grid::CELL_SIZE);
15   int cellY = (int)(unit->y_ / Grid::CELL_SIZE);
16 
17   // Add to the front of list for the cell it‘s in.
18   unit->prev_ = NULL;
19   unit->next_ = cells_[cellX][cellY];
20   cells_[cellX][cellY] = unit;
21  
22   if (unit->next_ != NULL)
23   {
24     unit->next_->prev_ = unit;
25   }
26 }

 

Unit移动:查看是否还在原先的单元格,如果离开了原先的单元格,从链表中移除再add

 1 void Unit::move(double x, double y)
 2 {
 3   grid_->move(this, x, y);
 4 } 
 5 
 6 void Grid::move(Unit* unit, double x, double y)
 7 {
 8   // See which cell it was in.
 9   int oldCellX = (int)(unit->x_ / Grid::CELL_SIZE);
10   int oldCellY = (int)(unit->y_ / Grid::CELL_SIZE); 
11 
12   // See which cell it‘s moving to.
13   int cellX = (int)(x / Grid::CELL_SIZE);
14   int cellY = (int)(y / Grid::CELL_SIZE);
15 
16   unit->x_ = x;
17   unit->y_ = y;
18  
19   // If it didn‘t change cells, we‘re done.
20   if (oldCellX == cellX && oldCellY == cellY) return; 
21 
22   // Unlink it from the list of its old cell.
23   if (unit->prev_ != NULL)
24   {
25     unit->prev_->next_ = unit->next_;
26   }
27  
28   if (unit->next_ != NULL)
29   {
30     unit->next_->prev_ = unit->prev_;
31   } 
32 
33   // If it‘s the head of a list, remove it.
34   if (cells_[oldCellX][oldCellY] == unit)
35   {
36     cells_[oldCellX][oldCellY] = unit->next_;
37   } 
38 
39   // Add it back to the grid at its new cell.
40   add(unit);
41 
42 }

 

战斗:查找单元格相邻一半的单元格(4个)

 1 void Grid::handleMelee()
 2 {
 3   for (int x = 0; x < NUM_CELLS; x++)
 4   {
 5     for (int y = 0; y < NUM_CELLS; y++)
 6     {
 7       handleCell(x, y);
 8     }
 9   }
10 }
11 
12 void Grid::handleCell(int x, int y)
13 {
14   Unit* unit = cells_[x][y];
15   while (unit != NULL)
16   {
17     // Handle other units in this cell.
18     handleUnit(unit, unit->next_); 
19 
20     // Also try the neighboring cells.
21     if (x > 0 && y > 0) handleUnit(unit, cells_[x - 1][y - 1]);
22     if (x > 0) handleUnit(unit, cells_[x - 1][y]);
23     if (y > 0) handleUnit(unit, cells_[x][y - 1]);
24     if (x > 0 && y < NUM_CELLS - 1)
25     {
26       handleUnit(unit, cells_[x - 1][y + 1]);
27     } 
28 
29     unit = unit->next_;
30   }
31 }
32 
33 void Grid::handleUnit(Unit* unit, Unit* other)
34 {
35   while (other != NULL)
36   {
37     if (distance(unit, other) < ATTACK_DISTANCE)
38     {
39       handleAttack(unit, other);
40     } 
41 
42     other = other->next_;
43   }
44 }

 

四叉树:

如果空间中的对象超过阈值,空间就一切四

  1. 添加单个对象不会产生一次以上的拆分动作
  2. 删除对象需要判断父区域对象总数,如果低于阈值则合并区域
  3. 移动对象等于一次删除和一次添加

《游戏编程模式》(8)

标签:false   move   str   grid   碎片   rmi   结构体   ati   恢复   

原文地址:http://www.cnblogs.com/pandawuwyj/p/6344559.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!