标签:log div fft iostream style typedef turn -- ace
有时间来补算法原理orz
#include <iostream> #include <cstdio> #include <cmath> #include <complex> using namespace std; const double pi = acos(-1); const int maxn = 111111; typedef complex<double> Complex; void DFT(Complex *a, int n, int t) { if(n == 1) return; complex <double> a0[n>>1], a1[n>>1]; for(int i = 0; i < n; i += 2) a0[i>>1] = a[i], a1[i>>1] = a[i+1]; DFT(a0, n>>1, t); DFT(a1, n>>1, t); complex <double> wn(cos(2*pi/n), t*sin(2*pi/n)), w(1, 0); for(int i = 0; i < (n>>1); i++, w *= wn) a[i] = a0[i] + w*a1[i], a[i+(n>>1)] = a0[i] - w*a1[i]; } Complex a[maxn], b[maxn]; int n1, n2, nn, x, c[maxn]; int main() { freopen("a.txt", "r", stdin); cin>>n1>>n2; for(int i = 0; i <= n1; i++) cin>>x, a[i] = Complex(x, 0); for(int i = 0; i <= n2; i++) cin>>x, b[i] = Complex(x, 0); nn = 1; while(nn <= n1+n2) nn <<= 1; DFT(a, nn, 1); DFT(b, nn, 1); for(int i = 0; i <= nn; i++) a[i] = a[i]*b[i]; DFT(a, nn, -1); for(int i = 0; i <= n1+n2; i++) c[i] = (a[i].real()/nn+0.5); for(int i = 0; i < n1+n2; i++) if(c[i] > 10) c[i+1] += c[i]/10, c[i] %= 10; for(int i = n1+n2; i >= 0; i--) cout<<c[i]; return 0; }
标签:log div fft iostream style typedef turn -- ace
原文地址:http://www.cnblogs.com/Saurus/p/6347728.html