码迷,mamicode.com
首页 > 其他好文 > 详细

AC日记——软件包管理器 洛谷 P2416

时间:2017-02-04 18:25:14      阅读:227      评论:0      收藏:0      [点我收藏+]

标签:++   注意   关系   技术分享   输出   决定   设计   include   add   

题目描述

Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。ebian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。

你决定设计你自己的软件包管理器。不可避免地,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m≥2)个软件包A1,A2,A3,?,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,A[m-1]依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。

现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。

输入输出格式

输入格式:

 

从文件manager.in中读入数据。

输入文件的第1行包含1个整数n,表示软件包的总数。软件包从0开始编号。

随后一行包含n−1个整数,相邻整数之间用单个空格隔开,分别表示1,2,3,?,n−2,n−1号软件包依赖的软件包的编号。

接下来一行包含1个整数q,表示询问的总数。之后q行,每行1个询问。询问分为两种:

install x:表示安装软件包x

uninstall x:表示卸载软件包x

你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态。

对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。

 

输出格式:

 

输出到文件manager.out中。

输出文件包括q行。

输出文件的第i行输出1个整数,为第i步操作中改变安装状态的软件包数。

 

输入输出样例

输入样例#1:
7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0
输出样例#1:
3
1
3
2
3
输入样例#2:
10
0 1 2 1 3 0 0 3 2
10
install 0
install 3
uninstall 2
install 7
install 5
install 9
uninstall 9
install 4
install 1
install 9
输出样例#2:
1
3
2
1
3
1
1
1
0
1

说明

【样例说明 1】

技术分享

一开始所有的软件包都处于未安装状态。

安装5号软件包,需要安装0,1,5三个软件包。

之后安装6号软件包,只需要安装6号软件包。此时安装了0,1,5,6四个软件包。

卸载1号软件包需要卸载1,5,6三个软件包。此时只有0号软件包还处于安装状态。

之后安装4号软件包,需要安装1,4两个软件包。此时0,1,4处在安装状态。最后,卸载0号软件包会卸载所有的软件包。`

【数据范围】

技术分享

【时限1s,内存512M】

 

思路:

  树剖。

 

来,上代码:

#include <cstdio>
#include <iostream>
#include <algorithm>

#define maxn 100001

using namespace std;

struct TreeNodeType {
    int l,r,dis,lit,mid,flag;
};
struct TreeNodeType tree[maxn<<2];

struct EdgeType {
    int to,next;
};
struct EdgeType edge[maxn<<1];

int if_z,n,size[maxn],deep[maxn],belong[maxn];
int flag[maxn],end[maxn],cnt,f[maxn],head[maxn];
int Enum,m;

char Cget;

inline void read_int(int &now)
{
    now=0,if_z=1,Cget=getchar();
    while(Cget>9||Cget<0)
    {
        if(Cget==-) if_z=-1;
        Cget=getchar();
    }
    while(Cget>=0&&Cget<=9)
    {
        now=now*10+Cget-0;
        Cget=getchar();
    }
    now*=if_z;
}

inline void edge_add(int from,int to)
{
    edge[++Enum].to=from,edge[Enum].next=head[to],head[to]=Enum;
    edge[++Enum].to=to,edge[Enum].next=head[from],head[from]=Enum;
}

void search(int now,int fa)
{
    int pos=cnt++;
    deep[now]=deep[fa]+1,f[now]=fa;
    for(int i=head[now];i;i=edge[i].next)
    {
        if(edge[i].to==fa) continue;
        search(edge[i].to,now);
    }
    size[now]=cnt-pos;
}

void search_(int now,int chain)
{
    flag[now]=++cnt;
    belong[now]=chain;
    int pos=-1;
    for(int i=head[now];i;i=edge[i].next)
    {
        if(edge[i].to==f[now]) continue;
        if(size[edge[i].to]>size[pos]) pos=edge[i].to;
    }
    if(pos!=-1) search_(pos,chain);
    for(int i=head[now];i;i=edge[i].next)
    {
        if(edge[i].to==f[now]||edge[i].to==pos) continue;
        search_(edge[i].to,edge[i].to);
    }
    end[now]=cnt;
}

void tree_build(int now,int l,int r)
{
    tree[now].l=l,tree[now].r=r;
    tree[now].lit=r-l+1;
    if(l==r) return ;
    tree[now].mid=(l+r)>>1;
    tree_build(now<<1,l,tree[now].mid);
    tree_build(now<<1|1,tree[now].mid+1,r);
}

inline void tree_up(int now)
{
    tree[now].dis=tree[now<<1].dis+tree[now<<1|1].dis;
}

inline void tree_down(int now)
{
    if(tree[now].lit==1) return ;
    if(tree[now].flag==1)
    {
        tree[now<<1].dis=0,tree[now<<1|1].dis=0;
        tree[now<<1].flag=tree[now<<1|1].flag=tree[now].flag;
    }
    if(tree[now].flag==2)
    {
        tree[now<<1].dis=tree[now<<1].lit;
        tree[now<<1|1].dis=tree[now<<1|1].lit;
        tree[now<<1].flag=tree[now<<1|1].flag=tree[now].flag;
    }
    tree[now].flag=0;
}

void tree_change(int now,int l,int r,int type)
{
    if(tree[now].l==l&&tree[now].r==r)
    {
        tree[now].flag=type;
        if(type==1) tree[now].dis=0;
        else tree[now].dis=tree[now].lit;
        return ;
    }
    if(tree[now].flag) tree_down(now);
    if(l>tree[now].mid) tree_change(now<<1|1,l,r,type);
    else if(r<=tree[now].mid) tree_change(now<<1,l,r,type);
    else
    {
        tree_change(now<<1,l,tree[now].mid,type);
        tree_change(now<<1|1,tree[now].mid+1,r,type);
    }
    tree_up(now);
}

int tree_query(int now,int l,int r)
{
    if(tree[now].l==l&&tree[now].r==r)
    {
        return tree[now].dis;
    }
    if(tree[now].flag) tree_down(now);
    tree_up(now);
    if(l>tree[now].mid) return tree_query(now<<1|1,l,r);
    else if(r<=tree[now].mid) return tree_query(now<<1,l,r);
    else return tree_query(now<<1,l,tree[now].mid)+tree_query(now<<1|1,tree[now].mid+1,r);
}

inline int solve(int x)
{
    int ans=0;
    while(belong[x]!=0)
    {
        ans+=(flag[x]-flag[belong[x]]+1)-tree_query(1,flag[belong[x]],flag[x]);
        tree_change(1,flag[belong[x]],flag[x],2);
        x=f[belong[x]];
    }
    ans+=(flag[x]-flag[belong[x]]+1)-tree_query(1,flag[belong[x]],flag[x]);
    tree_change(1,flag[belong[x]],flag[x],2);
    return ans;
}

int main()
{
    read_int(n);
    int to;
    for(int i=1;i<n;i++)
    {
        read_int(to);
        edge_add(i,to);
    }
    search(0,0),cnt=0,search_(0,0);
    tree_build(1,1,n);
    read_int(m);
    char ch[12];
    for(int i=1;i<=m;i++)
    {
        cin>>ch;read_int(to);
        if(ch[0]==i)
        {
            printf("%d\n",solve(to));
        }
        else
        {
            printf("%d\n",tree_query(1,flag[to],end[to]));
            tree_change(1,flag[to],end[to],1);
        }
    }
    return 0;
}

 

AC日记——软件包管理器 洛谷 P2416

标签:++   注意   关系   技术分享   输出   决定   设计   include   add   

原文地址:http://www.cnblogs.com/IUUUUUUUskyyy/p/6365796.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!