标签:algo tchar long for return rac main 处理 扩展
floyd。。。太神奇了(不会floyd(大雾))
貌似floyd的外层k是保证最短路从起点逐渐向外扩展(而不是乱搞233)
所以在处理f[i][j]=min(f[i][j],f[i][k]+f[k][j])的时候,f[i][k]都是已经处理过的,而f[k][j]都是没处理的。
所以这样的话就可以再加1维表示换的次数。(%DP)
1 #include<bits/stdc++.h> 2 #define LL long long 3 #define N 100005 4 using namespace std; 5 inline int ra() 6 { 7 int x=0,f=1; char ch=getchar(); 8 while (ch<‘0‘ || ch>‘9‘) {if (ch==‘-‘) f=-1; ch=getchar();} 9 while (ch>=‘0‘ && ch<=‘9‘) {x=x*10+ch-‘0‘; ch=getchar();} 10 return x*f; 11 } 12 int f[65][65][65],g[65][65][65]; 13 int main() 14 { 15 int n=ra(),m=ra(),r=ra(); 16 memset(f,0x7f,sizeof(f)); 17 for (int i=1; i<=m; i++) 18 for (int j=1; j<=n; j++) 19 for (int k=1; k<=n; k++) 20 g[i][j][k]=ra(); 21 for (int id=1; id<=m; id++) 22 for (int k=1; k<=n; k++) 23 for (int i=1; i<=n; i++) 24 for (int j=1; j<=n; j++) 25 g[id][i][j]=min(g[id][i][j],g[id][i][k]+g[id][k][j]); 26 for (int i=1; i<=n; i++) 27 for (int j=1; j<=n; j++) 28 for (int k=1; k<=m; k++) 29 f[i][j][0]=min(f[i][j][0],g[k][i][j]); 30 for (int e=1; e<=n; e++) 31 for (int k=1 ;k<=n; k++) 32 for (int i=1; i<=n; i++) 33 for (int j=1; j<=n; j++) 34 f[i][j][e]=min(f[i][j][e],f[i][k][e-1]+f[k][j][0]); 35 for (int i=1; i<=r; i++) 36 { 37 int s=ra(),t=ra(),k=ra(); 38 k=min(k,n); 39 printf("%d\n",f[s][t][k]); 40 } 41 return 0; 42 }
标签:algo tchar long for return rac main 处理 扩展
原文地址:http://www.cnblogs.com/ccd2333/p/6368244.html