码迷,mamicode.com
首页 > 其他好文 > 详细

HashMap实现原理分析

时间:2017-02-07 12:14:38      阅读:243      评论:0      收藏:0      [点我收藏+]

标签:toolbar   rom   into   不能   静态内部类   ati   区间   dac   二分查找   

1. HashMap的数据结构

数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。

数组

数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;

链表

链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。

哈希表

那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。

  哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:

技术分享

 

技术分享

 

  从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。

  HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。

  首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。

   
 /**
     * The table, resized as necessary. Length MUST Always be a power of two.
     */
    transient Entry[] table;

 

2. HashMap的存取实现

     既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:

1 // 存储时:
2 int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
3 int index = hash % Entry[].length;
4 Entry[index] = value;
5 
6 // 取值时:
7 int hash = key.hashCode();
8 int index = hash % Entry[].length;
9 return Entry[index];

1)put

 
疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?

  这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。

 1 public V put(K key, V value) {
 2         if (key == null)
 3             return putForNullKey(value); //null总是放在数组的第一个链表中
 4         int hash = hash(key.hashCode());
 5         int i = indexFor(hash, table.length);
 6         //遍历链表
 7         for (Entry<K,V> e = table[i]; e != null; e = e.next) {
 8             Object k;
 9             //如果key在链表中已存在,则替换为新value
10             if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
11                 V oldValue = e.value;
12                 e.value = value;
13                 e.recordAccess(this);
14                 return oldValue;
15             }
16         }
17         modCount++;
18         addEntry(hash, key, value, i);
19         return null;
20     }
21 
22  
23 
24 void addEntry(int hash, K key, V value, int bucketIndex) {
25     Entry<K,V> e = table[bucketIndex];
26     table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next
27     //如果size超过threshold,则扩充table大小。再散列
28     if (size++ >= threshold)
29             resize(2 * table.length);
30 }

 

当然HashMap里面也包含一些优化方面的实现,这里也说一下。比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size越来越大,Entry[]会以一定的规则加长长度。

 

2)get

public V get(Object key) {
        if (key == null)
            return getForNullKey();
        int hash = hash(key.hashCode());
        //先定位到数组元素,再遍历该元素处的链表
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
}

 

3)null key的存取

null key总是存放在Entry[]数组的第一个元素。

 1 private V putForNullKey(V value) {
 2         for (Entry<K,V> e = table[0]; e != null; e = e.next) {
 3             if (e.key == null) {
 4                 V oldValue = e.value;
 5                 e.value = value;
 6                 e.recordAccess(this);
 7                 return oldValue;
 8             }
 9         }
10         modCount++;
11         addEntry(0, null, value, 0);
12         return null;
13     }
14  
15     private V getForNullKey() {
16         for (Entry<K,V> e = table[0]; e != null; e = e.next) {
17             if (e.key == null)
18                 return e.value;
19         }
20         return null;
21     }

 

4)确定数组index:hashcode % table.length取模

HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:

/**
     * Returns index for hash code h.
     */
    static int indexFor(int h, int length) {
        return h & (length-1);
    }
 
按位取并,作用上相当于取模mod或者取余%。
这意味着数组下标相同,并不表示hashCode相同。
 

5)table初始大小

 1  public HashMap(int initialCapacity, float loadFactor) {
 2         .....
 3         // Find a power of 2 >= initialCapacity
 4         int capacity = 1;
 5         while (capacity < initialCapacity)
 6             capacity <<= 1;
 7         this.loadFactor = loadFactor;
 8         threshold = (int)(capacity * loadFactor);
 9         table = new Entry[capacity];
10         init();
11     }

 

注意table初始大小并不是构造函数中的initialCapacity!!

而是 >= initialCapacity的2的n次幂!!!!

————为什么这么设计呢?——

3. 解决hash冲突的办法

  1. 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
  2. 再哈希法
  3. 链地址法
  4. 建立一个公共溢出区

Java中hashmap的解决办法就是采用的链地址法。

 

4. 再散列rehash过程

当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。

 1  /**
 2      * Rehashes the contents of this map into a new array with a
 3      * larger capacity.  This method is called automatically when the
 4      * number of keys in this map reaches its threshold.
 5      *
 6      * If current capacity is MAXIMUM_CAPACITY, this method does not
 7      * resize the map, but sets threshold to Integer.MAX_VALUE.
 8      * This has the effect of preventing future calls.
 9      *
10      * @param newCapacity the new capacity, MUST be a power of two;
11      *        must be greater than current capacity unless current
12      *        capacity is MAXIMUM_CAPACITY (in which case value
13      *        is irrelevant).
14      */
15     void resize(int newCapacity) {
16         Entry[] oldTable = table;
17         int oldCapacity = oldTable.length;
18         if (oldCapacity == MAXIMUM_CAPACITY) {
19             threshold = Integer.MAX_VALUE;
20             return;
21         }
22         Entry[] newTable = new Entry[newCapacity];
23         transfer(newTable);
24         table = newTable;
25         threshold = (int)(newCapacity * loadFactor);
26     }
27 
28  
29 
30     /**
31      * Transfers all entries from current table to newTable.
32      */
33     void transfer(Entry[] newTable) {
34         Entry[] src = table;
35         int newCapacity = newTable.length;
36         for (int j = 0; j < src.length; j++) {
37             Entry<K,V> e = src[j];
38             if (e != null) {
39                 src[j] = null;
40                 do {
41                     Entry<K,V> next = e.next;
42                     //重新计算index
43                     int i = indexFor(e.hash, newCapacity);
44                     e.next = newTable[i];
45                     newTable[i] = e;
46                     e = next;
47                 } while (e != null);
48             }
49         }
50     }

 

HashMap实现原理分析

标签:toolbar   rom   into   不能   静态内部类   ati   区间   dac   二分查找   

原文地址:http://www.cnblogs.com/study-everyday/p/6373279.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!