标签:建议 man 抽样 容量 公式 output div 好的 lan
一、损失函数
深度学习中,常用的损失函数为均方误差和交叉熵,分别对应回归和分类问题,其实深度学习的损失函数和机器学习的损失函数差不多,是一致的,均方误差就相当于最小二乘,交叉熵其实是一种特殊的对数损失函数形式,这里不再赘述。
二、激活函数
是深度学习特有的。
关于激活函数,首先要搞清楚的问题是,激活函数是什么,有什么用?不用激活函数可不可以?答案是不可以。激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。 那么激活函数应该具有什么样的性质呢?
非线性: 当激活函数是线性的时候,一个两层的神经网络就可以逼近基本上所有的函数了。但是,如果激活函数是恒等激活函数的时候(即f(x)=x),就不满足这个性质了,而且如果MLP使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的。
可微性: 当优化方法是基于梯度的时候,这个性质是必须的。
单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。
f(x)≈x: 当激活函数满足这个性质的时候,如果参数的初始化是random的很小的值,那么神经网络的训练将会很高效;如果不满足这个性质,那么就需要很用心的去设置初始值。
输出值的范围: 当激活函数输出值是 有限 的时候,基于梯度的优化方法会更加 稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是 无限 的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate.
这些性质,也正是我们使用激活函数的原因!
Sigmoid 是常用的非线性的激活函数,它的数学形式如下: f(x)=11+e?x
正如前一节提到的,它能够把输入的连续实值“压缩”到0和1之间。
特别的,如果是非常大的负数,那么输出就是0;如果是非常大的正数,输出就是1.
sigmoid 函数曾经被使用的很多,不过近年来,用它的人越来越少了。主要是因为它的一些 缺点:
Sigmoids saturate and kill gradients. (saturate 这个词怎么翻译?饱和?)sigmoid 有一个非常致命的缺点,当输入非常大或者非常小的时候(saturation),这些神经元的梯度是接近于0的,从图中可以看出梯度的趋势。所以,你需要尤其注意参数的初始值来尽量避免saturation的情况。如果你的初始值很大的话,大部分神经元可能都会处在saturation的状态而把gradient kill掉,这会导致网络变的很难学习。
Sigmoid 的 output 不是0均值. 这是不可取的,因为这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。
产生的一个结果就是:如果数据进入神经元的时候是正的(e.g. x>0 elementwise in f=wTx+b),那么 w 计算出的梯度也会始终都是正的。
当然了,如果你是按batch去训练,那么那个batch可能得到不同的信号,所以这个问题还是可以缓解一下的。因此,非0均值这个问题虽然会产生一些不好的影响,不过跟上面提到的 kill gradients 问题相比还是要好很多的。
tanh
tanh 是上图中的右图,可以看出,tanh 跟sigmoid还是很像的,实际上,tanh 是sigmoid的变形:
tanh(x)=2sigmoid(2x)?1
与 sigmoid 不同的是,tanh 是0均值的。因此,实际应用中,tanh 会比 sigmoid 更好(毕竟去粗取精了嘛)。
ReLU
近年来,ReLU 变的越来越受欢迎。它的数学表达式如下:
f(x)=max(0,x)
很显然,从图左可以看出,输入信号<0时,输出都是0,>0 的情况下,输出等于输入。w 是二维的情况下,使用ReLU之后的效果如下:
ReLU 的优点:
Krizhevsky et al. 发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid/tanh 快很多(看右图)。有人说这是因为它是linear,而且 non-saturating
相比于 sigmoid/tanh,ReLU 只需要一个阈值就可以得到激活值,而不用去算一大堆复杂的运算。
ReLU 的缺点: 当然 ReLU 也有缺点,就是训练的时候很”脆弱”,很容易就”die”了. 什么意思呢?
举个例子:一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了。
如果这个情况发生了,那么这个神经元的梯度就永远都会是0.
实际操作中,如果你的learning rate 很大,那么很有可能你网络中的40%的神经元都”dead”了。
当然,如果你设置了一个合适的较小的learning rate,这个问题发生的情况其实也不会太频繁。
Leaky ReLUs: 就是用来解决这个 “dying ReLU” 的问题的。与 ReLU 不同的是:
f(x)=αx,(x<0)
f(x)=x,(x>=0)
这里的 α 是一个很小的常数。这样,即修正了数据分布,又保留了一些负轴的值,使得负轴信息不会全部丢失。
关于Leaky ReLU 的效果,众说纷纭,没有清晰的定论。有些人做了实验发现 Leaky ReLU 表现的很好;有些实验则证明并不是这样。
Parametric ReLU: 对于 Leaky ReLU 中的α,通常都是通过先验知识人工赋值的。
然而可以观察到,损失函数对α的导数我们是可以求得的,可不可以将它作为一个参数进行训练呢?
Kaiming He的论文《Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification》指出,不仅可以训练,而且效果更好。
公式非常简单,反向传播至未激活前的神经元的公式就不写了,很容易就能得到。对α的导数如下:
δyiδα=0,(ifyi>0),else=yi
原文说使用了Parametric ReLU后,最终效果比不用提高了1.03%.
Randomized ReLU:
Randomized Leaky ReLU 是 leaky ReLU 的random 版本 (α 是random的).
它首次试在 kaggle 的NDSB 比赛中被提出的。
核心思想就是,在训练过程中,α 是从一个高斯分布 U(l,u) 中 随机出来的,然后再测试过程中进行修正(有点像dropout的用法)。
数学表示如下:
在测试阶段,把训练过程中所有的 αij 取个平均值。NDSB 冠军的 α 是从 U(3,8) 中随机出来的。那么,在测试阶段,激活函数就是就是:
yij=xijl+u2
看看 cifar-100 中的实验结果:
Maxout出现在ICML2013上,作者Goodfellow将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start-of-art的识别率。
Maxout 公式如下:
fi(x)=maxj∈[1,k]zij
假设 w 是2维,那么有:
f(x)=max(wT1x+b1,wT2x+b2)
可以注意到,ReLU 和 Leaky ReLU 都是它的一个变形(比如,w1,b1=0 的时候,就是 ReLU).
Maxout的拟合能力是非常强的,它可以拟合任意的的凸函数。作者从数学的角度上也证明了这个结论,即只需2个maxout节点就可以拟合任意的凸函数了(相减),前提是”隐隐含层”节点的个数可以任意多.
所以,Maxout 具有 ReLU 的优点(如:计算简单,不会 saturation),同时又没有 ReLU 的一些缺点 (如:容易 go die)。不过呢,还是有一些缺点的嘛:就是把参数double了。
还有其他一些激活函数,请看下表:
怎么选择激活函数呢?
我觉得这种问题不可能有定论的吧,只能说是个人建议。
如果你使用 ReLU,那么一定要小心设置 learning rate,而且要注意不要让你的网络出现很多 “dead” 神经元,如果这个问题不好解决,那么可以试试 Leaky ReLU、PReLU 或者 Maxout.
三、优化算法
深度学习的优化算法跟机器学习也大体一样,但出现一些专门用于神经网络的优化算法,现在一一介绍。
主要是一阶的梯度法,包括SGD, Momentum, Nesterov Momentum, AdaGrad, RMSProp, Adam。 其中SGD,Momentum,Nesterov Momentum是手动指定学习速率的,而后面的AdaGrad, RMSProp, Adam,就能够自动调节学习速率.
二阶的方法目前还不太常用。
即batch gradient descent. 在训练中,每一步迭代都使用训练集的所有内容. 也就是说,利用现有参数对训练集中的每一个输入生成一个估计输出yi^,然后跟实际输出yi比较,统计所有误差,求平均以后得到平均误差,以此来作为更新参数的依据.
具体实现:
需要:学习速率 ?, 初始参数 θ
每步迭代过程:
1. 提取训练集中的所有内容{x1,…,xn},以及相关的输出yi
2. 计算梯度和误差并更新参数:
优点:
由于每一步都利用了训练集中的所有数据,因此当损失函数达到最小值以后,能够保证此时计算出的梯度为0,换句话说,就是能够收敛.因此,使用BGD时不需要逐渐减小学习速率?k
缺点:
由于每一步都要使用所有数据,因此随着数据集的增大,运行速度会越来越慢.
SGD全名 stochastic gradient descent, 即随机梯度下降。不过这里的SGD其实跟MBGD(minibatch gradient descent)是一个意思,即随机抽取一批样本,以此为根据来更新参数.
具体实现:
需要:学习速率 ?, 初始参数 θ
每步迭代过程:
1. 从训练集中的随机抽取一批容量为m的样本{x1,…,xm},以及相关的输出yi
2. 计算梯度和误差并更新参数:
优点:
训练速度快,对于很大的数据集,也能够以较快的速度收敛.
缺点:
由于是抽取,因此不可避免的,得到的梯度肯定有误差.因此学习速率需要逐渐减小.否则模型无法收敛
因为误差,所以每一次迭代的梯度受抽样的影响比较大,也就是说梯度含有比较大的噪声,不能很好的反映真实梯度.
学习速率该如何调整:
那么这样一来,?如何衰减就成了问题.如果要保证SGD收敛,应该满足如下两个要求:
而在实际操作中,一般是进行线性衰减:
其中?0是初始学习率, ?τ是最后一次迭代的学习率. τ自然代表迭代次数.一般来说,?τ 设为?0的1%比较合适.而τ一般设为让训练集中的每个数据都输入模型上百次比较合适.那么初始学习率?0怎么设置呢?书上说,你先用固定的学习速率迭代100次,找出效果最好的学习速率,然后?0设为比它大一点就可以了.
上面的SGD有个问题,就是每次迭代计算的梯度含有比较大的噪音. 而Momentum方法可以比较好的缓解这个问题,尤其是在面对小而连续的梯度但是含有很多噪声的时候,可以很好的加速学习.Momentum借用了物理中的动量概念,即前几次的梯度也会参与运算.为了表示动量,引入了一个新的变量v(velocity).v是之前的梯度的累加,但是每回合都有一定的衰减.
具体实现:
需要:学习速率 ?, 初始参数 θ, 初始速率v, 动量衰减参数α
每步迭代过程:
1. 从训练集中的随机抽取一批容量为m的样本{x1,…,xm},以及相关的输出yi
2. 计算梯度和误差,并更新速度v和参数θ:
其中参数α表示每回合速率v的衰减程度.同时也可以推断得到,如果每次迭代得到的梯度都是g,那么最后得到的v的稳定值为
也就是说,Momentum最好情况下能够将学习速率加速11?α倍.一般α的取值有0.5,0.9,0.99这几种.当然,也可以让α的值随着时间而变化,一开始小点,后来再加大.不过这样一来,又会引进新的参数.
特点:
前后梯度方向一致时,能够加速学习
前后梯度方向不一致时,能够抑制震荡
这是对之前的Momentum的一种改进,大概思路就是,先对参数进行估计,然后使用估计后的参数来计算误差
具体实现:
需要:学习速率 ?, 初始参数 θ, 初始速率v, 动量衰减参数α
每步迭代过程:
1. 从训练集中的随机抽取一批容量为m的样本{x1,…,xm},以及相关的输出yi
2. 计算梯度和误差,并更新速度v和参数θ:
注意在估算g^的时候,参数变成了θ+αv而不是之前的θ
AdaGrad可以自动变更学习速率,只是需要设定一个全局的学习速率?,但是这并非是实际学习速率,实际的速率是与以往参数的模之和的开方成反比的.也许说起来有点绕口,不过用公式来表示就直白的多:
其中δ是一个很小的常亮,大概在10?7,防止出现除以0的情况.
具体实现:
需要:全局学习速率 ?, 初始参数 θ, 数值稳定量δ
中间变量: 梯度累计量r(初始化为0)
每步迭代过程:
1. 从训练集中的随机抽取一批容量为m的样本{x1,…,xm},以及相关的输出yi
2. 计算梯度和误差,更新r,再根据r和梯度计算参数更新量
优点:
能够实现学习率的自动更改。如果这次梯度大,那么学习速率衰减的就快一些;如果这次梯度小,那么学习速率衰减的就满一些。
缺点:
任然要设置一个变量?
经验表明,在普通算法中也许效果不错,但在深度学习中,深度过深时会造成训练提前结束。
RMSProp通过引入一个衰减系数,让r每回合都衰减一定比例,类似于Momentum中的做法。
具体实现:
需要:全局学习速率 ?, 初始参数 θ, 数值稳定量δ,衰减速率ρ
中间变量: 梯度累计量r(初始化为0)
每步迭代过程:
1. 从训练集中的随机抽取一批容量为m的样本{x1,…,xm},以及相关的输出yi
2. 计算梯度和误差,更新r,再根据r和梯度计算参数更新量
优点:
相比于AdaGrad,这种方法很好的解决了深度学习中过早结束的问题
适合处理非平稳目标,对于RNN效果很好
缺点:
又引入了新的超参,衰减系数ρ
依然依赖于全局学习速率
当然,也有将RMSProp和Nesterov Momentum结合起来的
具体实现:
需要:全局学习速率 ?, 初始参数 θ, 初始速率v,动量衰减系数α, 梯度累计量衰减速率ρ
中间变量: 梯度累计量r(初始化为0)
每步迭代过程:
1. 从训练集中的随机抽取一批容量为m的样本{x1,…,xm},以及相关的输出yi
2. 计算梯度和误差,更新r,再根据r和梯度计算参数更新量
Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。
具体实现:
需要:步进值 ?, 初始参数 θ, 数值稳定量δ,一阶动量衰减系数ρ1, 二阶动量衰减系数ρ2
其中几个取值一般为:δ=10?8,ρ1=0.9,ρ2=0.999
中间变量:一阶动量s,二阶动量r,都初始化为0
每步迭代过程:
1. 从训练集中的随机抽取一批容量为m的样本{x1,…,xm},以及相关的输出yi
2. 计算梯度和误差,更新r和s,再根据r和s以及梯度计算参数更新量
标签:建议 man 抽样 容量 公式 output div 好的 lan
原文地址:http://www.cnblogs.com/taojake-ML/p/6382930.html