一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身
标签:php center scanf include hang 输入 print 深度 ota
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身
输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
//树链剖分模板 我是个安静的初学者 #include<iostream> #include<cstdio> #include<cstring> #define maxn 300001 using namespace std; int pos[maxn],son[maxn],top[maxn],size[maxn]; int deep[maxn],fa[maxn],head[maxn],a[maxn]; int tot,n,m,cnt,maxsize,x,y,num; struct node{int l,r,sum,max;}tre[maxn<<2]; struct edge{int to,pre;}e[maxn<<1]; int read() { int x=0,f=1;char c=getchar(); while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f; } void add(int from,int to) { e[++num].to=to; e[num].pre=head[from]; head[from]=num; } void build(int now,int l,int r) { tre[now].l=l;tre[now].r=r; if(l==r) { tre[now].sum=tre[now].max=0; return; } int mid=(l+r)>>1; build(now<<1,l,mid);build(now<<1|1,mid+1,r); tre[now].sum=tre[now<<1].sum+tre[now<<1|1].sum; tre[now].max=max(tre[now<<1].max,tre[now<<1|1].max); } void dfs1(int u) { size[u]=1;//初始化儿子个数 for(int i=head[u];i;i=e[i].pre) { int v=e[i].to; if(fa[u]==v) continue; deep[v]=deep[u]+1;//更新深度 fa[v]=u;//更新父亲节点 dfs1(v);size[u]+=size[v];//更新儿子个数 } return; } void dfs2(int u,int Top) { int k=0;maxsize++;//节点总数 pos[u]=maxsize;top[u]=Top;//节点编号;属于哪一条链; for(int i=head[u];i;i=e[i].pre) { int v=e[i].to; if(deep[v]>deep[u]&&size[v]>size[k]) k=v;//找重儿子 } if(!k) return;//当前点就是 dfs2(k,Top);//处理当前点 for(int i=head[u];i;i=e[i].pre) if(deep[e[i].to]>deep[u]&&e[i].to!=k) dfs2(e[i].to,e[i].to);//新的一条链 return; } void insert(int now,int x,int val)//插点 { if(tre[now].l==tre[now].r) { tre[now].sum=tre[now].max=val; return; } int mid=(tre[now].l+tre[now].r)>>1; if(x<=mid) insert(now<<1,x,val); else if(x>mid) insert(now<<1|1,x,val); tre[now].sum=tre[now<<1].sum+tre[now<<1|1].sum; tre[now].max=max(tre[now<<1].max,tre[now<<1|1].max); } int querysum(int k,int l,int r) { if(l<=tre[k].l&&tre[k].r<=r) return tre[k].sum; int mid=(tre[k].l+tre[k].r)>>1,total=0; if(l<=mid) total+=querysum(k<<1,l,r); if(r>mid) total+=querysum(k<<1|1,l,r); return total; } int querymax(int k,int l,int r) { if(l<=tre[k].l&&tre[k].r<=r) return tre[k].max; int mid=(tre[k].l+tre[k].r)>>1,total=-1e9; if(l<=mid) total=max(total,querymax(k<<1,l,r)); if(r>mid) total=max(total,querymax(k<<1|1,l,r)); return total; } int solvesum(int x,int y) { int ans=0; while(top[x]!=top[y])//找同一条链 { if(deep[top[x]]<deep[top[y]]) swap(x,y);//深的才能往上跳 ans+=querysum(1,pos[top[x]],pos[x]); x=fa[top[x]];//往上跳 } if(pos[x]>pos[y])swap(x,y);//来到了一条链上 ans+=querysum(1,pos[x],pos[y]); return ans; } int solvemax(int x,int y) { int ans=-1e9; while(top[x]!=top[y]) { if(deep[top[x]]<deep[top[y]]) swap(x,y); ans=max(ans,querymax(1,pos[top[x]],pos[x])); x=fa[top[x]]; } if(pos[x]>pos[y]) swap(x,y); ans=max(ans,querymax(1,pos[x],pos[y])); return ans; } int main() { n=read(); for(int i=1;i<n;i++) { x=read();y=read(); add(x,y);add(y,x); } for(int i=1;i<=n;i++) a[i]=read(); dfs1(1);dfs2(1,1); build(1,1,maxsize); for(int i=1;i<=n;i++) insert(1,pos[i],a[i]); m=read();char ch[11]; while(m--) { scanf("%s",ch); scanf("%d%d",&x,&y); if(ch[0]==‘C‘) a[x]=y,insert(1,pos[x],y); else{ if(ch[1]==‘M‘) printf("%d\n",solvemax(x,y)); else printf("%d\n",solvesum(x,y)); } } return 0; }
标签:php center scanf include hang 输入 print 深度 ota
原文地址:http://www.cnblogs.com/L-Memory/p/6390016.html