标签:对象 version return spooler 不一致 实例变量 mysq 撰写 err
转自
http://blog.csdn.net/cselmu9/article/details/51366946
在所有的设计模式中,单例模式是我们在项目开发中最为常见的设计模式之一,而单例模式有很多种实现方式,你是否都了解呢?高并发下如何保证单例模式的线程安全性呢?如何保证序列化后的单例对象在反序列化后任然是单例的呢?这些问题在看了本文之后都会一一的告诉你答案,赶快来阅读吧!
在文章开始之前我们还是有必要介绍一下什么是单例模式。单例模式是为确保一个类只有一个实例,并为整个系统提供一个全局访问点的一种模式方法。
从概念中体现出了单例的一些特点:
(1)、在任何情况下,单例类永远只有一个实例存在
(2)、单例需要有能力为整个系统提供这一唯一实例
为了便于读者更好的理解这些概念,下面给出这么一段内容叙述:
在计算机系统中,线程池、缓存、日志对象、对话框、打印机、显卡的驱动程序对象常被设计成单例。这些应用都或多或少具有资源管理器的功能。每台计算机可以有若干个打印机,但只能有一个Printer
Spooler,以避免两个打印作业同时输出到打印机中。每台计算机可以有若干通信端口,系统应当集中管理这些通信端口,以避免一个通信端口同时被两个请求同时调用。总之,选择单例模式就是为了避免不一致状态,避免政出多头。
正是由于这个特点,单例对象通常作为程序中的存放配置信息的载体,因为它能保证其他对象读到一致的信息。例如在某个服务器程序中,该服务器的配置信息可能存放在数据库或文件中,这些配置数据由某个单例对象统一读取,服务进程中的其他对象如果要获取这些配置信息,只需访问该单例对象即可。这种方式极大地简化了在复杂环境 下,尤其是多线程环境下的配置管理,但是随着应用场景的不同,也可能带来一些同步问题。
温馨提示:本文叙述中涉及到的相关源码可以在这里进行下载源码,读者可免积分下载。
饿汉式单例是指在方法调用前,实例就已经创建好了。下面是实现代码:
以上代码运行结果:
懒汉式单例是指在方法调用获取实例时才创建实例,因为相对饿汉式显得“不急迫”,所以被叫做“懒汉模式”。下面是实现代码:
执行结果如下:
要保证线程安全,我们就得需要使用同步锁机制,下面就来看看我们如何一步步的解决 存在线程安全问题的懒汉式单例(错误的单例)。
出现非线程安全问题,是由于多个线程可以同时进入getInstance()方法,那么只需要对该方法进行synchronized的锁同步即可:
此时任然使用前面验证多线程下执行情况的MyThread类来进行验证,将其放入到org.mlinge.s03包下运行,执行结果如下:
从执行结果上来看,问题已经解决了,但是这种实现方式的运行效率会很低。同步方法效率低,那我们考虑使用同步代码块来实现:
针对某些重要的代码进行单独的同步,而不是全部进行同步,可以极大的提高执行效率,我们来看一下:
为了达到线程安全,又能提高代码执行效率,我们这里可以采用DCL的双检查锁机制来完成,代码实现如下:
这里在声明变量时使用了volatile关键字来保证其线程间的可见性;在同步代码块中使用二次检查,以保证其不被重复实例化。集合其二者,这种实现方式既保证了其高效性,也保证了其线程安全性。
DCL解决了多线程并发下的线程安全问题,其实使用其他方式也可以达到同样的效果,代码实现如下:
静态内部类虽然保证了单例在多线程并发下的线程安全性,但是在遇到序列化对象时,默认的方式运行得到的结果就是多例的。
代码实现如下:
解决办法就是在反序列化的过程中使用readResolve()方法,单例实现的代码如下:
静态代码块中的代码在使用类的时候就已经执行了,所以可以应用静态代码块的这个特性的实现单例设计模式。
枚举enum和静态代码块的特性相似,在使用枚举时,构造方法会被自动调用,利用这一特性也可以实现单例:
不暴露枚举类实现细节的封装代码如下:
以上就是本文要介绍的所有单例模式的实现,相信认真阅读的读者都已经明白文章开头所引入的那几个问题了,祝大家读得开心:-D!
备注:本文的编写思路和实例源码参照《Java多线程编程核心技术》-(高洪岩)一书中第六章的学习案例撰写。
---恢复内容结束---
标签:对象 version return spooler 不一致 实例变量 mysq 撰写 err
原文地址:http://www.cnblogs.com/nanxiaoxiang/p/6404570.html