码迷,mamicode.com
首页 > 其他好文 > 详细

projecteuler---->problem=27----Quadratic primes

时间:2014-08-20 16:21:12      阅读:244      评论:0      收藏:0      [点我收藏+]

标签:projecteuler   python   

Euler discovered the remarkable quadratic formula:

n2 + n + 41

It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.

The incredible formula  n2 ? 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, ?79 and 1601, is ?126479.

Considering quadratics of the form:

n2 + an + b, where |a| < 1000 and |b| < 1000

where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |?4| = 4

Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.


import math,time
def isOk(temp):
	if temp < 0: return False
	for i in range(2,int(math.sqrt(temp))+1):
		if temp%i==0 :
 			return False
	return True

begin = time.time()
maxValue=0
lastValue=1
for a in range(-1000,1001):
	for b in range(-1000, 1001):
		n = 0	
		resu = 0
		while True:
			temp = n*n + a*n + b
			if(isOk(temp)):
				resu+=1
				n+=1
			else :
				break
		if resu>maxValue:
			maxValue = resu
			lastValue = a*b
print lastValue
end = time.time()
print end-begin


projecteuler---->problem=27----Quadratic primes,布布扣,bubuko.com

projecteuler---->problem=27----Quadratic primes

标签:projecteuler   python   

原文地址:http://blog.csdn.net/q745401990/article/details/38707671

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!