题目地址:POJ 3422
方法是对每个点i拆点成i‘和i‘‘,然后对每个i‘和i‘‘连一条费用为该点值,流量为1的边,再连1条费用为0,流量为k-1的边。
然后对每个点与右边下边相邻的点连边,流量均为INF,费用均为0。需要再建一源点与汇点,对于k次只需要在源点与汇点处进行限制即可。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=6000;
int head[maxn], source, sink, cnt, flow, cost, n;
int d[maxn], vis[maxn], cur[maxn], f[maxn];
int mp[100][100];
struct node
{
int u, v, cap, cost, next;
} edge[1000000];
void add(int u, int v, int cap, int cost)
{
edge[cnt].v=v;
edge[cnt].cap=cap;
edge[cnt].cost=cost;
edge[cnt].next=head[u];
head[u]=cnt++;
edge[cnt].v=u;
edge[cnt].cap=0;
edge[cnt].cost=-cost;
edge[cnt].next=head[v];
head[v]=cnt++;
}
int spfa()
{
memset(vis,0,sizeof(vis));
memset(d,INF,sizeof(d));
deque<int>q;
q.push_back(source);
d[source]=0;
cur[source]=-1;
f[source]=INF;
while(!q.empty())
{
int u=q.front();
q.pop_front();
vis[u]=0;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v;
if(d[v]>d[u]+edge[i].cost&&edge[i].cap)
{
d[v]=d[u]+edge[i].cost;
f[v]=min(f[u],edge[i].cap);
cur[v]=i;
if(!vis[v])
{
if(!q.empty()&&d[v]<d[q.front()])
{
q.push_front(v);
}
else
q.push_back(v);
vis[v]=1;
}
}
}
}
if(d[sink]==INF) return 0;
flow+=f[sink];
cost-=d[sink]*f[sink];
for(int i=cur[sink]; i!=-1; i=cur[edge[i^1].v])
{
edge[i].cap-=f[sink];
edge[i^1].cap+=f[sink];
}
return 1;
}
void mcmf()
{
flow=cost=0;
while(spfa()) ;
printf("%d\n",cost);
}
int main()
{
int i, j, k;
scanf("%d%d",&n,&k);
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&mp[i][j]);
}
}
memset(head,-1,sizeof(head));
cnt=0;
source=0;
sink=2*n*n+1;
add(source,1,k,0);
add(2*n*n,sink,k,0);
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
add((i-1)*n+j,(i-1)*n+j+n*n,1,-mp[i][j]);
add((i-1)*n+j,(i-1)*n+j+n*n,k-1,0);
if(i+1<=n)
{
add((i-1)*n+j+n*n,i*n+j,k,0);
}
if(j+1<=n)
{
add((i-1)*n+j+n*n,(i-1)*n+j+1,k,0);
}
}
}
mcmf();
return 0;
}POJ 3422 Kaka's Matrix Travels(网络流之费用流),布布扣,bubuko.com
POJ 3422 Kaka's Matrix Travels(网络流之费用流)
原文地址:http://blog.csdn.net/scf0920/article/details/38707429