码迷,mamicode.com
首页 > 其他好文 > 详细

POJ2142 The Balance (扩展欧几里德)

时间:2017-02-19 23:36:32      阅读:199      评论:0      收藏:0      [点我收藏+]

标签:ring   i++   int   扩展欧几里德   printf   algorithm   logs   mit   blog   

本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia

The Balance
题目大意 
你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<=a,b<=10000)的两种砝码。让你求出一种方案称出重为c(1<=c<=50000)的物品,如有多种方案,请输出两种砝码需要数量的总和最小的方案。
输入
有若干行,每行三个数,a,b,c。
结束时用0 0 0表示。
输出
若干行,每行两个数,表示每个询问中a的数量与b的数量
如果无解输出 no solution
分析
题目就是求方程 ax+by=c,求出一组解很容易,就用扩展欧几里德求,可是要求出使|x|+|y|最小的解就得想一想。如果是枚举,肯定超时。
有没有什么好的方法求出我们要的x,y? 我们假设a>b ,x0,y0为求得的解,x,y为目标解。
根据扩欧的性质,我们知道
x=x0 + b/gcd*t
y=y0 — a/gcd*t
我们可以得到这样的函数 |x|+|y|=|x0 + b/gcd*t|+|y0 — a/gcd*t| 因为我们知道a>b,所以x0加得比y0减得比慢。因此y0占主导地位,
故当y0 — a/gcd*t=0时|x|+|y|最小。我们可以枚举t±5的解,寻找最小就行。
#include <cstdio>
#include <iostream>
#include <cmath>
#include <queue>
#include <algorithm>
#include <cstring>
#include <climits>
#define MAXN 10000+10
using namespace std;
int e_gcd(int a,int b,int& x,int& y)
{
    if(!b)
    {    
        x=1;
        y=0;
        return a;
    }
    int ans=e_gcd(b,a%b,x,y);
    int tmp=x;
    x=y;
    y=tmp-a/b*y;
    return ans;
}
int a,b,c,x,y,gcd,t,minn=~(1<<31),ansx=0,ansy=0;
int main()
{
    while(scanf("%d%d%d",&a,&b,&c)&&!(a==0&&b==0&&c==0))
    {
        int flag=0;
        if(a<b) 
        {
            flag=1;
            swap(a,b);
        }
        gcd=e_gcd(a,b,x,y);
        minn=~(1<<31),ansx=0,ansy=0;
        if(c%gcd) {printf("no solution\n");continue;}
        x*=(c/gcd);y*=(c/gcd);
        t=(y*gcd)/a;
        for(int i=t-5;i<=t+5;i++)
        {
            if(abs(x+b/gcd*i)+abs(y-a/gcd*i)<minn)
            {
                minn=abs(x+b/gcd*i)+abs(y-a/gcd*i);
                ansx=abs(x+b/gcd*i),ansy=abs(y-a/gcd*i);
            }
        }
        if(flag==0) printf("%d %d\n",ansx,ansy);
        else printf("%d %d\n",ansy,ansx);
    }
    return 0;
}

 

POJ2142 The Balance (扩展欧几里德)

标签:ring   i++   int   扩展欧几里德   printf   algorithm   logs   mit   blog   

原文地址:http://www.cnblogs.com/yangyaojia/p/6417666.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!