标签:find 分支 例子 sdn 提高 输入 i++ 函数 color
常见问题:
首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……
以下面这组数据输入数据来说明
4 2 1 3 4 3
第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?
我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!
并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。
int pre[1000 ]; int find(int x) //查找根节点 { int r=x; while ( pre[r ] != r ) //返回根节点 r r=pre[r ]; int i=x , j ; while( i != r ) //路径压缩 { j = pre[ i ]; // 在改变上级之前用临时变量 j 记录下他的值 pre[ i ]= r ; //把上级改为根节点 i=j; } return r ; } void join(int x,int y) //判断x y是否连通, //如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起, { int fx=find(x),fy=find(y); if(fx!=fy) pre[fx ]=fy; }
为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?
我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。
但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。
下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。
int find(int x) //查找我(x)的掌门 { int r=x; //委托 r 去找掌门 while (pre[r ]!=r) //如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =) r=pre[r ] ; // r 就接着找他的上级,直到找到掌门为止。 return r ; //掌门驾到~~~ }
再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?
void join(int x,int y) //我想让虚竹和周芷若做朋友 { int fx=find(x),fy=find(y); //虚竹的老大是玄慈,芷若MM的老大是灭绝 if(fx!=fy) //玄慈和灭绝显然不是同一个人 pre[fx ]=fy; //方丈只好委委屈屈地当了师太的手下啦 }
再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么鬼样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。
关于提高查找效率,除了路径压缩还有另外一个做法, 再来看这段代码:
void join(int x,int y) //判断x y是否连通, //如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起, { int fx=find(x),fy=find(y); if(fx!=fy) pre[fx]=fy; }
上面pre[fx ]=fy;这行代码看上去似乎不太对劲。因为这也属于一种“硬编码”,这样实现是基于一个约定,即fx所在的树总是会被作为fy所在树的子树,从而实现两颗独立的树的融合。那么这样的约定是不是总是合理的呢?显然不是,比如fx所在的树的规模比fy所在的树的规模大的多时,fx和fy结合之后形成的树就是十分不和谐的一头轻一头重的”畸形树“了。
所以我们应该考虑树的大小,然后再来决定到底是调用: pre[fx] = fy; 还是 pre[fy] = fx;
即总是size小的树作为子树和size大的树进行合并。这样就能够尽量的保持整棵树的平衡。
所以现在的问题就变成了:树的大小该如何确定?
我们回到最初的情形,即每个节点最一开始都是属于一个独立的组,通过下面的代码进行初始化:
for (int i = 0; i < N; i++) id[i] = i; // 每个节点的组号就是该节点的序号
以此类推,在初始情况下,每个组的大小都是1,因为只含有一个节点,所以我们可以使用额外的一个数组来维护每个组的大小,对该数组的初始化也很直观:
for (int i = 0; i < N; i++) sz[i] = 1; // 初始情况下,每个组的大小都是1
而在进行合并的时候,会首先判断待合并的两棵树的大小,然后按照上面图中的思想进行合并,实现代码:
public void union(int p, int q) { int i = find(p); int j = find(q); if (i == j) return; // 将小树作为大树的子树 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; } else { id[j] = i; sz[i] += sz[j]; } count--; }
Quick-Union 和 Weighted Quick-Union 的比较:
可以发现,通过sz数组决定如何对两棵树进行合并之后,最后得到的树的高度大幅度减小了。这是十分有意义的,因为在Quick-Union算法中的任何操作,都不可避免的需要调用find方法,而该方法的执行效率依赖于树的高度。树的高度减小了,find方法的效率就增加了,从而也就增加了整个Quick-Union算法的效率。
上图其实还可以给我们一些启示,即对于Quick-Union算法而言,节点组织的理想情况应该是一颗十分扁平的树,所有的孩子节点应该都在height为1的地方,即所有的孩子都直接连接到根节点。这样的组织结构能够保证find操作的最高效率。
标签:find 分支 例子 sdn 提高 输入 i++ 函数 color
原文地址:http://www.cnblogs.com/scarecrow-blog/p/6424680.html