码迷,mamicode.com
首页 > 其他好文 > 详细

BZOJ2467 [中山市选2010]生成树

时间:2017-03-08 21:30:11      阅读:230      评论:0      收藏:0      [点我收藏+]

标签:lex   解释   complex   getc   name   turn   matrix   etc   bzoj2467   

本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

 

 

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

 

题目链接:BZOJ2467

正解:矩阵树定理 or  组合数学

解题报告:

  这道题有两种做法…

  一种是建图,然后用$Matrix-Tree$定理强上,建出基尔霍夫矩阵,高斯消元,但是建图的话有点麻烦。

  还有一种就是纯粹从组合数学的角度了:

  考虑如果$n$个五边形每个断掉一条边就会得到一个基环外向树,此时还需要断掉一条边,这意味着$n$个五边形中就有一个五边形要断掉两条边,并且容易想到有一条必然是在中心的那个$n$边形上,那么就可以用组合数学来表示了。

  从$n$个五边形中选取一个是选两条边的,这个五边形在中央$n$边形上那条边必选,那么只需在剩下$4$条边再断一条即可,而剩下的$n-1$个五边形都是随便断一条即可,

  总方案数就是$4*n*5^{n-1}$。

 

//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int mod = 2007;
int n,ans;

inline int getint(){
    int w=0,q=0; char c=getchar(); while((c<‘0‘||c>‘9‘) && c!=‘-‘) c=getchar();
    if(c==‘-‘) q=1,c=getchar(); while (c>=‘0‘&&c<=‘9‘) w=w*10+c-‘0‘,c=getchar(); return q?-w:w;
}

inline int fast_pow(int x,int y){
	int r=1;
	while(y>0) {
		if(y&1) r*=x,r%=mod;
		x*=x; x%=mod;
		y>>=1;
	}
	return r;
}

inline void work(){
	int T=getint();
	while(T--) {
		n=getint(); ans=4*n;
		ans*=fast_pow(5,n-1);
		ans%=mod;
		cout<<ans<<endl;
	}
}

int main()
{
    work();
    return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。

  

BZOJ2467 [中山市选2010]生成树

标签:lex   解释   complex   getc   name   turn   matrix   etc   bzoj2467   

原文地址:http://www.cnblogs.com/ljh2000-jump/p/6522954.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!