码迷,mamicode.com
首页 > 其他好文 > 详细

图像处理与机器学习(验证码的识别)

时间:2017-03-09 00:31:18      阅读:557      评论:0      收藏:0      [点我收藏+]

标签:com   进制   领域   程序   python   图像识别   bsp   持久化   难点   

这个东西,从放寒假的前一天,老师叫我做起,已经快2个月了,开学一个星期后,在陈老师的督促下,算是做的差不多了。

这个的应用领域主要是自动化程序,验证码可以说是网络安全的一道防火墙,自动化程序的难点。

但是,对于这个图像识别这个技术来说,还远远不够,至于应用的角度,更是狭窄,因此这不是一个终点,恰恰是一个起点。

 

机器学习有监督学习和无监督学习两种;我这里是监督学习,当然就得我手动的写每一张验证码的正确值了。

 

语言:   python

工具:   opencv

 

总体思路:样本学习,测试;

1、样本学习:

  •   首先要对样本去噪,去噪将干扰线删除,对于一个像素点来说,他的四周的其余的点,有5个,或者较多的像素点是空白,那么将可以判断他是噪点,而将他删除掉。
  •   扭曲矫正,我这里的扭曲矫正,是片面的,真正是很难有较好的效果,对于不同的验证码,有不同的特点,有一些验证码的产生,就有这样的特点,角落处,有阴影,这使得字符有扭曲,根据这里,来实现不同程度的扭曲矫正。
  •       切割图像,将每个字符切割下来,这里也是相对的了,粘连较严重即将影响字符的正确。
  •       二进制化图像,是字符的地方是0,没有的地方是1(这里相反没有问题)。生成训练集。
  •       训练模型制作,字符,二进制的像素点,joblib持久化保存,将模型保存到本地,进行预测,速度更快。
  •       通过随机森林算法将样本数据训练。


2、测试:

  •   测试的步骤和学习的步骤类似。
  •       通过训练模型得到的分类结果计算正确率。

最后识别率在100%

技术分享

图像处理与机器学习(验证码的识别)

标签:com   进制   领域   程序   python   图像识别   bsp   持久化   难点   

原文地址:http://www.cnblogs.com/TreeDream/p/6523400.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!