标签:http bre targe ons blank can 异或 ble 去重
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=2844
sol :因为这个是不去重空间,所以麻烦点QAQ
考虑去重空间的做法,直接线性基+树形dp即可
而对于不去重空间,其大小为2^n,求出异或空间的秩m,则去重空间的大小为2^m
那么去重异或空间的每个值在不去重异或空间里出现2^(n-m)次
所以答案即为去重异或空间的答案*2(n-m)+1即可
记得开long long
#include<iostream> #include<algorithm> #include<cstdio> #include<cmath> #define int long long using namespace std; const int Mx=100010; const int p=10086; int n,m,x,q,rank,now,a[Mx]; void gauss() { now=1,m=31; while(m--) for(int i=now;i<=n;i++) if(a[i]&(1<<m)) { swap(a[i],a[now]); for(int j=1;j<=n;j++) if(j!=now&&(a[j]&(1<<m))) a[j]^=a[now]; now++; break; } now--; } signed main() { scanf("%lld",&n); for(int i=1;i<=n;i++) scanf("%lld",&a[i]); scanf("%lld",&q); gauss(); for(int i=1;i<=now;i++) { if((x^a[i])>q) continue; x^=a[i]; rank=(rank+(1<<(now-i)))%p; } for(int i=1;i<=n-now;i++) rank=(rank<<1)%p; printf("%lld\n",(rank+1)%p); return 0; }
标签:http bre targe ons blank can 异或 ble 去重
原文地址:http://www.cnblogs.com/xiaoxubi/p/6541257.html