码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 4975 A simple Gaussian elimination problem. 网络流+矩阵上的dp

时间:2014-08-21 19:26:44      阅读:226      评论:0      收藏:0      [点我收藏+]

标签:io   for   ar   amp   line   size   ad   sp   

随机输出保平安啊

和hdu4888一个意思,先跑个网络流然后dp判可行。

==n^3的dp过不了,所以把n改成200。

==因为出题人没有把多解的情况放在200*200以外的矩阵。

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>

using namespace std;

const int MAX_N = 1207;
const int MAX_E = MAX_N * MAX_N * 5;
const int INF = 0x3f3f3f3f;

struct Edge {
    int v, nxt;
    long long cap;
    Edge() {

    }
    Edge(int _v, int _nxt, long long _cap) {
        v = _v, nxt = _nxt, cap = _cap;
    }
};

Edge G[MAX_E];
int edgecnt, head[MAX_N];
int gap[MAX_N], d[MAX_N];

struct Isap {
    int n, s, t;
    void init(int n, int s, int t) {
        this->n = n, this->s = s, this->t = t;
        edgecnt = 0;
        memset(head, -1, sizeof head);
    }
    void addedge(int u, int v, long long cap) {
        G[edgecnt] = Edge(v, head[u], cap);
        head[u] = edgecnt++;
        G[edgecnt] = Edge(u, head[v], 0);
        head[v] = edgecnt++;
    }
    long long dfs(int u, long long tot) {
        if (u == t) return tot;
        int minh = n - 1;
        long long leave = tot;
        for (int i = head[u]; ~i && leave; i = G[i].nxt) {
            int v = G[i].v;
            if (G[i].cap > 0) {
                if (d[v] + 1 == d[u]) {
                    long long c = dfs(v, min(leave, G[i].cap));
                    G[i].cap -= c;
                    G[i ^ 1].cap += c;
                    leave -= c;
                    if (d[s] >= n) 
                        return tot - leave;
                }
                minh = min(minh, d[v]);
            }
        }
        if (leave == tot) {
            --gap[d[u]];
            if (gap[d[u]] == 0) d[s] = n;
            d[u] = minh + 1;
            ++gap[d[u]];
        }
        return tot - leave;
    }
    long long maxFlow() {
        long long ret = 0;
        memset(gap, 0, sizeof gap);
        memset(d, 0, sizeof d);
        gap[0] = n;
        while (d[s] < n) {
            ret += dfs(s, INF);
        }
        return ret;
    }
};
 
int n, m, k;
int mat[MAX_N][MAX_N];
int c[MAX_N][MAX_N];

inline bool rd(int &n){    
    int x = 0, tmp = 1;    
    char c = getchar();    
    while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();    
    if(c == EOF) return false;    
    if(c == '-') c = getchar(), tmp = -1;    
    while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();    
    n = x*tmp;    
    return true;  
}    

int main() {
    int T;
    scanf("%d", &T);
    int cas = 0;
    while (T-- > 0) {
        Isap ans;
        scanf("%d%d", &n, &m);
        k = 9;
        ans.init(n + m + 2, 0, n + m + 1);
        int s = 0, t = n + m + 1;
        long long sum1 = 0, sum2 = 0;
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                ans.addedge(i, n + j, k);
            }
        }
        for (int i = 1; i <= n; ++i) {
            int rowSum = 0;
            rd(rowSum);
            sum1 += rowSum;
            ans.addedge(0, i, rowSum);    
        }
        for (int i = 1; i <= m; ++i) {
            int colSum = 0;
            rd(colSum);
            sum2 += colSum;
            ans.addedge(n + i, t, colSum);
        }       
        int q = ans.maxFlow();
        printf("Case #%d: ", ++cas);
        if (sum1 != sum2 || q != sum1) puts("So naive!");
        else {
            int edge = 0;
            n = min(n, 200);
            m = min(m, 200);
            for (int i = 1; i <= n; ++i) {
                for (int j = 1; j <= m; ++j, edge += 2) {
                    mat[i][j] = G[edge ^ 1].cap;
                }
            }
            memset(c, false, sizeof c);
            bool f = false;
            for (int i = 1; i <= n; ++i) {
                for (int j = 1; j <= m; ++j) {
                    for (int l = j + 1; l <= m; ++l) {
                        bool f1 = false, f2 = false;
                        if (mat[i][j] != k && mat[i][l] != 0) {// column j could add, column l could dec 
                            if (c[l][j]) {
                                l = m + 1, j = m + 1, i = n + 1;
                                f = true;
                            }
                            f1 = true;
                        }
                        if (mat[i][j] != 0 && mat[i][l] != k) {// column l could add, column j could dec
                            if (c[j][l]) {
                                l = m + 1, j = m + 1, i = n + 1;
                                f = true;
                            }
                            f2 = true;
                        }
                        if (f1) c[j][l] = true;
                        if (f2) c[l][j] = true;
                    }
                }
            }
            if (f) puts("So young!");
            else {
                puts("So simple!");
            } 
        }
    } 
    return 0;
}


HDU 4975 A simple Gaussian elimination problem. 网络流+矩阵上的dp,布布扣,bubuko.com

HDU 4975 A simple Gaussian elimination problem. 网络流+矩阵上的dp

标签:io   for   ar   amp   line   size   ad   sp   

原文地址:http://blog.csdn.net/qq574857122/article/details/38734199

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!