1、Clone Graph
Clone an undirected graph. Each node in the graph contains a label
and
a list of its neighbors
.
Nodes are labeled uniquely.
We use#
as a separator for each node, and ,
as
a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
0
.
Connect node 0
to
both nodes 1
and 2
.1
.
Connect node 1
to
node 2
.2
.
Connect node 2
to
node 2
(itself),
thus forming a self-cycle.Visually, the graph looks like the following:
1 / / 0 --- 2 / \_/
分析:复制图,乍一看挺像复制有随机指针的链表的,复制随机链表是三步进行的,图不能采用此种方法,但是可以借鉴,可以先深度遍历,相当于先复制所有节点,再复制邻居指针,采用递归的形式进行深度遍历。复制邻居指针时,需要判断邻居结点是否已经访问过,而结点的label是唯一的,可以采用map来保存。同时注意当map中值为指针时,key存在用下标进行访问时,map[key]也为空,采用map.find(key)!=map.end()来进行判断表中是否已经保存。
代码如下:
class Solution { public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if(node==NULL){ return NULL; } unordered_map<int,UndirectedGraphNode*> labelNodeMap; return cloneGraphRecursive(node,labelNodeMap); } UndirectedGraphNode *cloneGraphRecursive(UndirectedGraphNode *node,unordered_map<int,UndirectedGraphNode*>& labelNodeMap) { if(labelNodeMap.find(node->label) != labelNodeMap.end()){ return labelNodeMap[node->label]; } UndirectedGraphNode* clonedNode = new UndirectedGraphNode(node->label); labelNodeMap.insert(make_pair(node->label,clonedNode)); for(int i=0; i< node->neighbors.size(); ++i){ UndirectedGraphNode* neighborNode = cloneGraphRecursive(node->neighbors[i],labelNodeMap); clonedNode->neighbors.push_back(neighborNode); } return clonedNode; } };
2、Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab"
,
Return
[ ["aa","b"], ["a","a","b"] ]
分析:输出一个字符串的所有可划分为回文的可能,采用递归的手法,依次判断前i个是否是回文,并递归判断后续的。
代码如下:
class Solution { public: vector<vector<string>> partition(string s) { vector<string> strVec; partitionCore(s,strVec); return allPartition; } void partitionCore(string s,vector<string>& strVec){ int length = s.length(); if(s.empty()){ allPartition.push_back(strVec); return; } for(int i=1; i<=length; ++i){ string subStr = s.substr(0,i); if(isPalindrome(subStr)){ strVec.push_back(subStr); string leftSubStr = s.substr(i,length-i); partitionCore(leftSubStr,strVec); strVec.pop_back(); } } } bool isPalindrome(string s){ int length = s.length(); if(length == 1){ return true; } int begin = 0; int end = length-1; while(begin <= end){ if(s[begin]!=s[end]){ return false; } ++begin; --end; } return true; } vector<vector<string>> allPartition; };
3、Palindrome Partitioning II
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could
be produced using 1 cut.
分析:初步分析,根据上题稍加修改,就能计算出来最小分割数,但是一直出现超时的问题。递归耗时太多,超时的代码如下:
Status:
class Solution { public: int minCut(string s) { minCutNum = s.length()-1; partitionCore(s,0); return minCutNum; } void partitionCore(string s,int cutNum){ int length = s.length(); if(s.empty()){ -- cutNum; if(cutNum < minCutNum){ minCutNum = cutNum; } return; } if(minCutNum <= cutNum){ return; } for(int i=length; i>=1; --i){ if(isPalindrome(s,0,i-1)){ string leftSubStr = s.substr(i,length-i); partitionCore(leftSubStr,cutNum+1); if(minCutNum == 0){ return; } } } } bool isPalindrome(string s,int i,int j){ while(i <= j){ if(s[i]!=s[j]){ return false; } ++i; --j; } return true; } int minCutNum; };
改进,分析上述超时的原因,有两个方面,第一采用递归而不是循环的方式耗时多,第二在判断字串是否是回文串时,采用遍历操作,很多子问题重复求解。
有了原因的分析,来改进,对于第二个判断字串是否是回文串时,采用动态规划的问题,如判断一个字符串位置i到j的字串是否为回文串,如果i和j相同则只有一个字符,为真;如果s[i]==s[j],则和字符串位置i+1到j-1的分析相同.为了避免多次重复计算,保存各个位置到另外位置的回文串标志。
对于第一个问题,也可以采用动态规划的方法,计算从0位置开始到i位置的分割数,如果0到i字符串就是一个回文串则分割数为0;如果不是,则从0-i开始依次判断其中j到i位置是否是回文串,如果是就是从0位置开始到j位置的分割数+1,得到的最小值为此时要求的分个数。其实思想和上题是一样的。
代码如下:(边界问题处理了好久,一定不要下标越界)
Accepted
class Solution { public: int minCut(string s) { int length = s.length(); if(length <= 1){ return 0; } vector<int> tempMap; for(int i=0; i<length; ++i){ tempMap.push_back(0); } vector<int> minVec; for(int i=0; i<length; ++i){ tempMap[i]= 1; paliMap.push_back(tempMap); tempMap[i] = 0; minVec.push_back(length-1); } for(int i=0; i<length; ++i){ if(isPalindrome(s,0,i)){ minVec[i] = 0; }else{ int tempMin = length-1; for(int j=0; j<i; ++j){ int temp = 0; if(isPalindrome(s,j+1,i)){ temp = minVec[j]+1; }else{ temp = minVec[j] + i - j; } if(temp<tempMin){ tempMin = temp; } } minVec[i] = tempMin; } } return minVec[length-1]; } bool isPalindrome(string& s, int i, int j){ if(i > j || i<0 || j >= s.length()){ return false; } if(paliMap[i][j]){ return true; } if(s[i] == s[j]){ if(i == j-1){ return paliMap[i][j] = 1; }else{ return paliMap[i][j] = paliMap[i+1][j-1]; } }else{ return paliMap[i][j] = 0; } } vector<vector<int>> paliMap; };
leetcode -day11 Clone Graph & Palindrome Partitioning I II,布布扣,bubuko.com
leetcode -day11 Clone Graph & Palindrome Partitioning I II
原文地址:http://blog.csdn.net/kuaile123/article/details/25308529