码迷,mamicode.com
首页 > 其他好文 > 详细

直方图、基数、选择性、群集因子

时间:2017-03-20 00:30:27      阅读:236      评论:0      收藏:0      [点我收藏+]

标签:3.1   并且   validate   actor   generated   nbsp   cts   cte   select   

基本概念 




基数(Cardinality) 列唯一键(Distinct_keys)的数量,比如性别,该列只有男女之分,所以这一列基数是2。


选择性(Selectivity) 列唯一键(Distinct_Keys)与行数(Num_Rows)的比值。


直方图 (Histogram)是一种对数据分布质量情况进行描述的工具。它会按照某一列不同值出现数量多少,以及出现的频率高低来绘制数据的分布情况,以便能够指导优化器根据数据的分布做出正确的选择。


频率直方图(FREQUENCY HISTOGRAM),当列中Distinct_keys 较少(小于254),如果不手工指定直方图桶数(BUCKET),Oracle就会自动的创建频率直方图,并且桶数(BUCKET)等于Distinct_Keys。


高度平衡直方图(HEIGHT BALANCED),当列中Distinct_keys大于254,如果不手工指定直方图桶数(BUCKET),Oracle就会自动的创建高度平衡直方图。






集群因子(Clustering Factor) 描述一个表中的列是否是规则排序的。


我们知道可以通过dbms_rowid.rowid_block_number(rowid)找到记录对应的block 号。索引中记录了rowid,因此oracle 就可以根据索引中的rowid来判断记录是否是在同一个block 中。举个例子,比如说索引中有a,b,c,d,e五个记录,首先比较a,b 是否在同一个block,如果不在同一个block 那么Clustering Factor +1,然后继续比较b,c 同理,如果b,c 不在同一个block,那么Clustering Factor+1,这样一直进行下去,直到比较了所有的记录。根据算法我们就可以知道clustering factor 的值介于block 数和表行数之间。如果clustering factor 接近block 数,说明表的存储和索引存储排序接近,也就是说表中的记录很有序,这样在做index range scan 的时候能,读取少量的data block 就能得到我们想要的数据,代价比较小。如果clustering factor 接近表记录数,说明表的存储和索引排序差异很大,在做index range scan 的时候,会额外读取多个block,因为表记录分散,代价较高。








1. 创建实验表
SQL> show user;
USER is "ANDY"


SQL>create table test as select * from dba_objects;


2. 先收集统计信息


BEGIN
DBMS_STATS.GATHER_TABLE_STATS(ownname          => ‘ANDY‘,
tabname          => ‘TEST‘,
estimate_percent => 100,
method_opt       => ‘for all columns size skewonly‘,
no_invalidate    => FALSE,
degree           => 1,
cascade          => TRUE);
END;
/


说明:对于大表 estimate_percent 参数一般指定为 30% ,够CBO用就行。




补充内容
删统计信息   (这里不要操作,作为了解)
BEGIN
DBMS_STATS.GATHER_TABLE_STATS(ownname          => ‘ANDY‘,
tabname          => ‘TEST‘,
estimate_percent => 100,
method_opt       => ‘for all columns size 1‘,
no_invalidate    => FALSE,
degree           => 1,
cascade          => TRUE);
END;
/




3.查询统计信息   (基数和选择性)


select a.column_name,
b.num_rows,
a.num_distinct Cardinality,
round(a.num_distinct / b.num_rows * 100, 2) selectivity,
a.histogram,
a.num_buckets
from dba_tab_col_statistics a, dba_tables b
where a.owner = b.owner
and a.table_name = b.table_name
and a.owner = ‘ANDY‘
and a.table_name = ‘TEST‘;




COLUMN_NAME                      NUM_ROWS CARDINALITY SELECTIVITY HISTOGRAM       NUM_BUCKETS
------------------------------ ---------- ----------- ----------- --------------- -----------
OWNER                               74770          30         .04 FREQUENCY                30
OBJECT_NAME                         74770       46694       62.45 HEIGHT BALANCED         254
SUBOBJECT_NAME                      74770          51         .07 FREQUENCY                51
OBJECT_ID                           74770       74770         100 NONE                      1
DATA_OBJECT_ID                      74770        9792        13.1 HEIGHT BALANCED         254
OBJECT_TYPE                         74770          43         .06 FREQUENCY                43
CREATED                             74770        1120         1.5 HEIGHT BALANCED         254
LAST_DDL_TIME                       74770        1185        1.58 HEIGHT BALANCED         254
TIMESTAMP                           74770        1240        1.66 HEIGHT BALANCED         254
STATUS                              74770           2           0 FREQUENCY                 2
TEMPORARY                           74770           2           0 FREQUENCY                 2


COLUMN_NAME                      NUM_ROWS CARDINALITY SELECTIVITY HISTOGRAM       NUM_BUCKETS
------------------------------ ---------- ----------- ----------- --------------- -----------
GENERATED                           74770           2           0 FREQUENCY                 2
SECONDARY                           74770           2           0 FREQUENCY                 2
NAMESPACE                           74770          20         .03 FREQUENCY                20
EDITION_NAME                        74770           0           0 NONE                      0


15 rows selected.


观察得到:
如果 CARDINALITY 基数小于254 ,那么 NUM_BUCKETS 桶数 就= 列基数 CARDINALITY。




总结:


1.
在OLTP系统中,基数/选择性高的列,适合建立B-Tree索引,选择性低的列不适合建立索引。
在OLAP环境中,基数低的列根据需求,可能会建立bitmap索引。


2.
没有直方图,CBO认为这个数据是分布均匀的,执行计划中估算返回的行数是基于列基数的平均值,
与实际返回的行数不符,可能产生错误的执行计划。


3.
什么时候该执行统计直方图操作  -> 执行计划估算的行数和实际查询返回的行数进行比较,如果相差很大,则需。

直方图、基数、选择性、群集因子

标签:3.1   并且   validate   actor   generated   nbsp   cts   cte   select   

原文地址:http://www.cnblogs.com/andy6/p/6582954.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!