码迷,mamicode.com
首页 > 其他好文 > 详细

Trie树

时间:2014-08-22 10:46:36      阅读:213      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   os   io   for   ar   

Trie树也称字典树,因为其效率很高,所以在在字符串查找、前缀匹配等中应用很广泛,其高效率是以空间为代价的。

一.Trie树的原理

    利用串构建一个字典树,这个字典树保存了串的公共前缀信息,因此可以降低查询操作的复杂度。

    下面以英文单词构建的字典树为例,这棵Trie树中每个结点包括26个孩子结点,因为总共有26个英文字母(假设单词都是小写字母组成)。

    则可声明包含Trie树的结点信息的结构体:

bubuko.com,布布扣
#define MAX 26

typedef struct TrieNode //Trie结点声明
{
bool isStr; //标记该结点处是否构成单词
struct TrieNode *next[MAX]; //儿子分支
}Trie;
bubuko.com,布布扣

    其中next是一个指针数组,存放着指向各个孩子结点的指针。

    如给出字符串"abc","ab","bd","dda",根据该字符串序列构建一棵Trie树。则构建的树如下:

    

bubuko.com,布布扣

 Trie树的根结点不包含任何信息,第一个字符串为"abc",第一个字母为‘a‘,因此根结点中数组next下标为‘a‘-97的值不为 NULL,其他同理,构建的Trie树如图所示,红色结点表示在该处可以构成一个单词。很显然,如果要查找单词"abc"是否存在,查找长度则为 O(len),len为要查找的字符串的长度。而若采用一般的逐个匹配查找,则查找长度为O(len*n),n为字符串的个数。显然基于Trie树的查找 效率要高很多。

但是却是以空间为代价的,比如图中每个结点所占的空间都为(26*4+1)Byte=105Byte,那么这棵Trie树所占的空间则为105*8Byte=840Byte,而普通的逐个查找所占空间只需(3+2+2+3)Byte=10Byte。

二.Trie树的操作

    在Trie树中主要有3个操作,插入、查找和删除。一般情况下Trie树中很少存在删除单独某个结点的情况,因此只考虑删除整棵树。

1.插入

  假设存在字符串str,Trie树的根结点为root。i=0,p=root。

  1)取str[i],判断p->next[str[i]-97]是否为空,若为空,则建立结点temp,并将p->next[str[i]-97]指向temp,然后p指向temp;

   若不为空,则p=p->next[str[i]-97];

  2)i++,继续取str[i],循环1)中的操作,直到遇到结束符‘\0‘,此时将当前结点p中的isStr置为true。

2.查找

  假设要查找的字符串为str,Trie树的根结点为root,i=0,p=root

  1)取str[i],判断判断p->next[str[i]-97]是否为空,若为空,则返回false;若不为空,则p=p->next[str[i]-97],继续取字符。

  2)重复1)中的操作直到遇到结束符‘\0‘,若当前结点p不为空并且isStr为true,则返回true,否则返回false。

3.删除

  删除可以以递归的形式进行删除。

测试程序:

/*Trie树(字典树) 2011.10.10*/
 
#include <iostream>
#include<cstdlib>
#define MAX 26
using namespace std;
 
typedef struct TrieNode                     //Trie结点声明
{
    bool isStr;                            //标记该结点处是否构成单词
    struct TrieNode *next[MAX];            //儿子分支
}Trie;
 
void insert(Trie *root,const char *s)     //将单词s插入到字典树中
{
    if(root==NULL||*s==‘\0‘)
        return;
    int i;
    Trie *p=root;
    while(*s!=‘\0‘)
    {
        if(p->next[*s-‘a‘]==NULL)        //如果不存在,则建立结点
        {
            Trie *temp=(Trie *)malloc(sizeof(Trie));
            for(i=0;i<MAX;i++)
            {
                temp->next[i]=NULL;
            }
            temp->isStr=false;
            p->next[*s-‘a‘]=temp;
            p=p->next[*s-‘a‘];  
        }  
        else
        {
            p=p->next[*s-‘a‘];
        }
        s++;
    }
    p->isStr=true;                       //单词结束的地方标记此处可以构成一个单词
}
 
int search(Trie *root,const char *s)  //查找某个单词是否已经存在
{
    Trie *p=root;
    while(p!=NULL&&*s!=‘\0‘)
    {
        p=p->next[*s-‘a‘];
        s++;
    }
    return (p!=NULL&&p->isStr==true);      //在单词结束处的标记为true时,单词才存在
}
 
void del(Trie *root)                      //释放整个字典树占的堆区空间
{
    int i;
    for(i=0;i<MAX;i++)
    {
        if(root->next[i]!=NULL)
        {
            del(root->next[i]);
        }
    }
    free(root);
}
 
int main(int argc, char *argv[])
{
    int i;
    int n,m;                              //n为建立Trie树输入的单词数,m为要查找的单词数
    char s[100];
    Trie *root= (Trie *)malloc(sizeof(Trie));
    for(i=0;i<MAX;i++)
    {
        root->next[i]=NULL;
    }
    root->isStr=false;
    scanf("%d",&n);
    getchar();
    for(i=0;i<n;i++)                 //先建立字典树
    {
        scanf("%s",s);
        insert(root,s);
    }
    while(scanf("%d",&m)!=EOF)
    {
        for(i=0;i<m;i++)                 //查找
        {
            scanf("%s",s);
            if(search(root,s)==1)
                printf("YES\n");
            else
                printf("NO\n");
        }
        printf("\n");  
    }
    del(root);                         //释放空间很重要
    return 0;
}

Trie树,布布扣,bubuko.com

Trie树

标签:style   blog   http   color   os   io   for   ar   

原文地址:http://www.cnblogs.com/happyday56/p/3928701.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!