码迷,mamicode.com
首页 > 其他好文 > 详细

【bzoj2661】[BeiJing wc2012]连连看 最大费用最大流

时间:2017-03-23 21:53:24      阅读:223      评论:0      收藏:0      [点我收藏+]

标签:cpp   print   main   基础   连连看   str   题解   scan   输出   

题目描述

凡是考智商的题里面总会有这么一种消除游戏。不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏。我们的规则是,给出一个闭区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y)的平方差x2-y2是一个完全平方数z2,并且y与z互质,那么就可以将x和y连起来并且将它们一起消除,同时得到x+y点分数。那么过关的要求就是,消除的数对尽可能多的前提下,得到足够的分数。快动手动笔算一算吧。

输入     

只有一行,两个整数,分别表示a,b。

输出

两个数,可以消去的对数,及在此基础上能得到的最大分数。

样例输入

1 15

样例输出

2 34


题解

拆点+最大费用最大流

分析题目要求,发现x和y一定是互质的。

对于i和j,如果i和j符合题目要求,那么加i->j‘和j->i‘,容量为1,费用为i+j的两条边。

对于所有的i,加S->i和i‘->T,容量为1,费用为0的边。

然后跑最大费用最大流,答案为maxflow/2和mincost/2。

这样建图看起来是理所当然的。好像有什么问题?

会不会出现a1->a2‘,a2->a3‘,a3->a1‘的情况?以及会不会TLE?

自己写一个程序试了一下,测试结果:不存在a1->a2‘,a2->a3‘,a3->a1‘的情况,满足条件的点对最多只有316*2对。

然后跑一下最大费用最大流就AC了。

方法:先将cost取相反数,然后跑最小费用最大流,再对费用取相反数。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int head[2010] , to[100010] , val[100010] , cost[100010] , next[100010] , cnt = 1 , dis[2010] , from[2010] , pre[2010] , s , t;
int gcd(int x , int y)
{
	return y ? gcd(y , x % y) : x;
}
void add(int x , int y , int z , int c)
{
	to[++cnt] = y , val[cnt] = z , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
	to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
	int i , x;
	memset(from , -1 , sizeof(from));
	memset(dis , 0x7f , sizeof(dis));
	dis[s] = 0;
	q.push(s);
	while(!q.empty())
	{
		x = q.front() , q.pop();
		for(i = head[x] ; i ; i = next[i])
			if(val[i] && dis[to[i]] > dis[x] + cost[i])
				dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
	}
	return ~from[t];
}
int main()
{
	int n , a , b , i , j , tmp , maxflow = 0 , mincost = 0 , k;
	scanf("%d%d" , &a , &b);
	n = b - a + 1 , s = 0 , t = 2 * n + 1;
	for(i = a ; i <= b ; i ++ )
	{
		for(j = a ; j < i ; j ++ )
		{
			tmp = (int)round(sqrt(i * i - j * j));
			if(tmp * tmp == i * i - j * j && gcd(j , tmp) == 1)
				add(i - a + 1 , j - a + 1 + n , 1 , - i - j) , add(j - a + 1 , i - a + 1 + n , 1 , - i - j);
		}
	}
	for(i = 1 ; i <= n ; i ++ ) add(s , i , 1 , 0) , add(i + n , t , 1 , 0);
	while(spfa())
	{
		k = 0x7f7f7f7f;
		for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
		maxflow += k , mincost += k * dis[t];
		for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
	}
	printf("%d %d\n" , maxflow / 2 , -mincost / 2);
	return 0;
}

【bzoj2661】[BeiJing wc2012]连连看 最大费用最大流

标签:cpp   print   main   基础   连连看   str   题解   scan   输出   

原文地址:http://www.cnblogs.com/GXZlegend/p/6607123.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!