We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital.
The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital.
Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.
def is_pandigital(*args, **kwargs): #将三个数转化成String并排序 num = sorted(''.join(str(arg) for arg in args)) print num print "kwargs = ",kwargs try: if kwargs['length'] and len(num) != kwargs['length']: return False except KeyError: pass for i in range(len(num)): if str(i+1) != str(num[i]): return False return True def main(): pandigitals = set() total = 0 for multiplicand in range(1, 5000): for multiplier in range(1, 100): product = multiplicand * multiplier if is_pandigital(multiplicand, multiplier, product, length=9): pandigitals.add(product) print sum(pandigitals) if __name__ == "__main__": main()
projecteuler---->problem=32----Pandigital products
原文地址:http://blog.csdn.net/q745401990/article/details/38757551