众所周知的是,TMK特别容易迟到,终于在TMK某次又迟到了之后,Maple怒了,Maple大喊一声:“我要跟你决一死战!”然后Maple就跟TMK玩起了一个关于占点的游戏。
Maple在一个无限展开的只有整数点的二维平面上找到两个点,由TMK和Maple分别操控这两个点,两人轮流操作,每一次操作中TMK或Maple可以把他的点移动一格到上、下、左、右四个方向,当TMK操作时,移动到的这个点会被染成红色,而当Maple操作时,移动到的这个点会被染成蓝色,需要注意的是,两个起始时的两个点也都会被染上相应的颜色,而当任一人走到已经染了不同颜色的点,这个颜色会被覆盖掉,当两个点覆盖在一起时,这个点会被后来的点染色。当游戏结束时染着自己颜色的点就代表被自己占领了。
TMK一下就明白了,这个游戏的目标是让自己占领的点比对方占领的点多,而且要让差值最大。
为了公平一些,Maple决定让TMK来选择先手或后手和让TMK来选择点,相应的Maple就会选择另一个点。
现在给出游戏的总轮数N,Maple选择的两个点的坐标(x1,y1),(x2,y2),要TMK来选择先后手和起始点,假设Maple一定按最优策略来走,问TMK能不能选择先后手和起始点使得自己占领的点比Maple占领的多,如果能,那么同时要求出占领的点数的最大差值。