标签:负数 lis malloc 算法 sizeof ons command ems init
#include "stdafx.h" #include "stdio.h" #include <stdlib.h> #include "string.h" typedef int elemType ; /************************************************************************/ /* 以下是关于线性表链接存储(单链表)操作的18种算法 */ /* 1.初始化线性表,即置单链表的表头指针为空 */ /* 2.创建线性表,此函数输入负数终止读取数据*/ /* 3.打印链表,链表的遍历*/ /* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为一个空表 */ /* 5.返回单链表的长度 */ /* 6.检查单链表是否为空,若为空则返回1,否则返回0 */ /* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停止程序运行 */ /* 8.从单链表中查找具有给定值x的第一个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */ /* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */ /* 10.向单链表的表头插入一个元素 */ /* 11.向单链表的末尾添加一个元素 */ /* 12.向单链表中第pos个结点位置插入元素为x的结点,若插入成功返回1,否则返回0 */ /* 13.向有序单链表中插入元素x结点,使得插入后仍然有序 */ /* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停止程序运行 */ /* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停止程序运行 */ /* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停止程序运行 */ /* 17.从单链表中删除值为x的第一个结点,若删除成功则返回1,否则返回0 */ /* 18.交换2个元素的位置 */ /* 19.将线性表进行快速排序 */ /************************************************************************/ typedef struct Node{ /* 定义单链表结点类型 */ elemType element; Node *next; }Node; /* 1.初始化线性表,即置单链表的表头指针为空 */ void initList(Node **pNode) { *pNode = NULL; printf ( "initList函数执行,初始化成功\n" ); } /* 2.创建线性表,此函数输入负数终止读取数据*/ Node *creatList(Node *pHead) { Node *p1; Node *p2; p1=p2=(Node *) malloc ( sizeof (Node)); //申请新节点 if (p1 == NULL || p2 ==NULL) { printf ( "内存分配失败\n" ); exit (0); } memset (p1,0, sizeof (Node)); scanf ( "%d" ,&p1->element); //输入新节点 p1->next = NULL; //新节点的指针置为空 while (p1->element > 0) //输入的值大于0则继续,直到输入的值为负 { if (pHead == NULL) //空表,接入表头 { pHead = p1; } else { p2->next = p1; //非空表,接入表尾 } p2 = p1; p1=(Node *) malloc ( sizeof (Node)); //再重申请一个节点 if (p1 == NULL || p2 ==NULL) { printf ( "内存分配失败\n" ); exit (0); } memset (p1,0, sizeof (Node)); scanf ( "%d" ,&p1->element); p1->next = NULL; } printf ( "creatList函数执行,链表创建成功\n" ); return pHead; //返回链表的头指针 } /* 3.打印链表,链表的遍历*/ void printList(Node *pHead) { if (NULL == pHead) //链表为空 { printf ( "PrintList函数执行,链表为空\n" ); } else { while (NULL != pHead) { printf ( "%d " ,pHead->element); pHead = pHead->next; } printf ( "\n" ); } } /* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为一个空表 */ void clearList(Node *pHead) { Node *pNext; //定义一个与pHead相邻节点 if (pHead == NULL) { printf ( "clearList函数执行,链表为空\n" ); return ; } while (pHead->next != NULL) { pNext = pHead->next; //保存下一结点的指针 free (pHead); pHead = pNext; //表头下移 } printf ( "clearList函数执行,链表已经清除\n" ); } /* 5.返回单链表的长度 */ int sizeList(Node *pHead) { int size = 0; while (pHead != NULL) { size++; //遍历链表size大小比链表的实际长度小1 pHead = pHead->next; } printf ( "sizeList函数执行,链表长度 %d \n" ,size); return size; //链表的实际长度 } /* 6.检查单链表是否为空,若为空则返回1,否则返回0 */ int isEmptyList(Node *pHead) { if (pHead == NULL) { printf ( "isEmptyList函数执行,链表为空\n" ); return 1; } printf ( "isEmptyList函数执行,链表非空\n" ); return 0; } /* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停止程序运行 */ elemType getElement(Node *pHead, int pos) { int i=0; if (pos < 1) { printf ( "getElement函数执行,pos值非法\n" ); return 0; } if (pHead == NULL) { printf ( "getElement函数执行,链表为空\n" ); return 0; //exit(1); } while (pHead !=NULL) { ++i; if (i == pos) { break ; } pHead = pHead->next; //移到下一结点 } if (i < pos) //链表长度不足则退出 { printf ( "getElement函数执行,pos值超出链表长度\n" ); return 0; } return pHead->element; } /* 8.从单链表中查找具有给定值x的第一个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */ elemType *getElemAddr(Node *pHead, elemType x) { if (NULL == pHead) { printf ( "getElemAddr函数执行,链表为空\n" ); return NULL; } if (x < 0) { printf ( "getElemAddr函数执行,给定值X不合法\n" ); return NULL; } while ((pHead->element != x) && (NULL != pHead->next)) //判断是否到链表末尾,以及是否存在所要找的元素 { pHead = pHead->next; } if ((pHead->element != x) && (pHead != NULL)) { printf ( "getElemAddr函数执行,在链表中未找到x值\n" ); return NULL; } if (pHead->element == x) { printf ( "getElemAddr函数执行,元素 %d 的地址为 0x%x\n" ,x,&(pHead->element)); } return &(pHead->element); //返回元素的地址 } /* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */ int modifyElem(Node *pNode, int pos,elemType x) { Node *pHead; pHead = pNode; int i = 0; if (NULL == pHead) { printf ( "modifyElem函数执行,链表为空\n" ); } if (pos < 1) { printf ( "modifyElem函数执行,pos值非法\n" ); return 0; } while (pHead !=NULL) { ++i; if (i == pos) { break ; } pHead = pHead->next; //移到下一结点 } if (i < pos) //链表长度不足则退出 { printf ( "modifyElem函数执行,pos值超出链表长度\n" ); return 0; } pNode = pHead; pNode->element = x; printf ( "modifyElem函数执行\n" ); return 1; } /* 10.向单链表的表头插入一个元素 */ int insertHeadList(Node **pNode,elemType insertElem) { Node *pInsert; pInsert = (Node *) malloc ( sizeof (Node)); memset (pInsert,0, sizeof (Node)); pInsert->element = insertElem; pInsert->next = *pNode; *pNode = pInsert; printf ( "insertHeadList函数执行,向表头插入元素成功\n" ); return 1; } /* 11.向单链表的末尾添加一个元素 */ int insertLastList(Node **pNode,elemType insertElem) { Node *pInsert; Node *pHead; Node *pTmp; //定义一个临时链表用来存放第一个节点 pHead = *pNode; pTmp = pHead; pInsert = (Node *) malloc ( sizeof (Node)); //申请一个新节点 memset (pInsert,0, sizeof (Node)); pInsert->element = insertElem; while (pHead->next != NULL) { pHead = pHead->next; } pHead->next = pInsert; //将链表末尾节点的下一结点指向新添加的节点 *pNode = pTmp; printf ( "insertLastList函数执行,向表尾插入元素成功\n" ); return 1; } /* 12.向单链表中第pos个结点位置插入元素为x的结点,若插入成功返回1,否则返回0 */ /* 13.向有序单链表中插入元素x结点,使得插入后仍然有序 */ /* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停止程序运行 */ /* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停止程序运行 */ /* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停止程序运行 */ /* 17.从单链表中删除值为x的第一个结点,若删除成功则返回1,否则返回0 */ /* 18.交换2个元素的位置 */ /* 19.将线性表进行快速排序 */ /******************************************************************/ int main() { Node *pList=NULL; int length = 0; elemType posElem; initList(&pList); //链表初始化 printList(pList); //遍历链表,打印链表 pList=creatList(pList); //创建链表 printList(pList); sizeList(pList); //链表的长度 printList(pList); isEmptyList(pList); //判断链表是否为空链表 posElem = getElement(pList,3); //获取第三个元素,如果元素不足3个,则返回0 printf ( "getElement函数执行,位置 3 中的元素为 %d\n" ,posElem); printList(pList); getElemAddr(pList,5); //获得元素5的地址 modifyElem(pList,4,1); //将链表中位置4上的元素修改为1 printList(pList); insertHeadList(&pList,5); //表头插入元素12 printList(pList); insertLastList(&pList,10); //表尾插入元素10 printList(pList); clearList(pList); //清空链表 system ( "pause" ); } |
标签:负数 lis malloc 算法 sizeof ons command ems init
原文地址:http://www.cnblogs.com/lnlin/p/6648370.html