标签:target 读者 机器 解决 知识库 alt ref 不能 而且
在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解。在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法。由于两种方法有些相似,我特地拿来简单地对比一下。下面的内容需要读者之前熟悉两种算法。
梯度下降法用来求解目标函数的极值。这个极值是给定模型给定数据之后在参数空间中搜索找到的。迭代过程为:
可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha。梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终到达坡底。为了更形象地理解,也为了和牛顿法比较,这里我用一个二维图来表示:
懒得画图了直接用这个展示一下。在二维图中,梯度就相当于凸函数切线的斜率,横坐标就是每次迭代的参数,纵坐标是目标函数的取值。每次迭代的过程是这样:
根据这个过程我们发现,每一步走的距离在极值点附近非常重要,如果走的步子过大,容易在极值点附近震荡而无法收敛。解决办法:将alpha设定为随着迭代次数而不断减小的变量,但是也不能完全减为零。
首先得明确,牛顿法是为了求解函数值为零的时候变量的取值问题的,具体地,当要求解 f(θ)=0时,如果 f可导,那么可以通过迭代公式
来迭代求得最小值。通过一组图来说明这个过程。
当应用于求解最大似然估计的值时,变成?′(θ)=0的问题。这个与梯度下降不同,梯度下降的目的是直接求解目标函数极小值,而牛顿法则变相地通过求解目标函数一阶导为零的参数值,进而求得目标函数最小值。那么迭代公式写作:
当θ是向量时,牛顿法可以使用下面式子表示:
其中H叫做海森矩阵,其实就是目标函数对参数θ的二阶导数。
通过比较牛顿法和梯度下降法的迭代公式,可以发现两者及其相似。海森矩阵的逆就好比梯度下降法的学习率参数alpha。牛顿法收敛速度相比梯度下降法很快,而且由于海森矩阵的的逆在迭代中不断减小,起到逐渐缩小步长的效果。
牛顿法的缺点就是计算海森矩阵的逆比较困难,消耗时间和计算资源。因此有了拟牛顿法。
标签:target 读者 机器 解决 知识库 alt ref 不能 而且
原文地址:http://www.cnblogs.com/hellochennan/p/6654202.html