标签:ack queue type class 判断 oid stream logs amp
题意:在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
分析:
1、和八皇后很相似,一行一行的放,并判断该列是否放过。
2、唯一注意的是,因为要摆放的棋子数k可能小于棋盘的行数,所以不一定是从第一行开始放的,所以每行的情况都要搜一下。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 10000 + 10; const int MAXT = 10000 + 10; using namespace std; char pic[10][10]; int n, k; int ans; int vis[10]; void dfs(int x, int cur){ if(cur == k){ ++ans; return; } if(x >= n) return; for(int i = 0; i < n; ++i){ if(!vis[i] && pic[x][i] == ‘#‘){ vis[i] = 1; dfs(x + 1, cur + 1); vis[i] = 0; } } dfs(x + 1, cur); } int main(){ while(scanf("%d%d", &n, &k) == 2){ if(n == -1 && k == -1) return 0; for(int i = 0; i < n; ++i){ scanf("%s", pic[i]); } memset(vis, 0, sizeof vis); ans = 0; dfs(0, 0); printf("%d\n", ans); } return 0; }
标签:ack queue type class 判断 oid stream logs amp
原文地址:http://www.cnblogs.com/tyty-Somnuspoppy/p/6657391.html