标签:tle amp base ima spec chm html main any
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Each input file contains one test case. For each case, the first line contains a positive integer NN (\le 20≤20) which is the total number of keys to be inserted. Then NN distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
For each test case, print the root of the resulting AVL tree in one line.
5
88 70 61 96 120
70
/*! * \file 04-树5 Root of AVL Tree.cpp * * \author ranjiewen * \date 2017/04/01 18:54 * * */ #include <stdio.h> #include <stdlib.h> typedef struct AVLNode *Position; typedef Position AVLTree; typedef int ElementType; struct AVLNode{ ElementType Data; AVLTree Left; AVLTree Right; int Height; //树高 }; int Max(int a, int b) { return a > b ? a : b; } //可将程序中用到的GetTreeHeight()替换掉 int GetHeight(Position p) { if (!p) return -1; return p->Height; } int GetTreeHeight(AVLTree T) { int HL = 0, HR = 0; int Max_H = 0; if (T) { if (T->Left) { HL = GetTreeHeight(T->Left); } if (T->Right) { HR = GetTreeHeight(T->Right); } Max_H = (HL > HR) ? (HL + 1) : (HR + 1); } return Max_H; } AVLTree SingleLeftRotation(AVLTree A) { //A必须有一个左子结点B //将A与B做左单旋,更新A,B的高度,返回新的根节点B AVLTree B = A->Left; A->Left = B->Right; B->Right = A; A->Height = Max(GetTreeHeight(A->Left), GetTreeHeight(A->Right)) + 1; B->Height = Max(GetTreeHeight(B->Left), A->Height) + 1; return B; } AVLTree SingleRightRotation(AVLTree A) { //A必须有一个右子节点B //将A,B做右单旋,更新A,B的高度,返回新的根节点B AVLTree B = A->Right; A->Right = B->Left; B->Left = A; A->Height = Max(GetTreeHeight(A->Left),GetTreeHeight(A->Right))+1; B->Height = Max(GetTreeHeight(B->Right), A->Height) + 1; return B; } AVLTree DoubleLeftRightRotation(AVLTree A) { //A必须有一个左子节点B,且B必须有一个右子节点C //将A,B与C做两次单旋,返回新的根节点C //将B,C做右单旋,C被返回 A->Left = SingleRightRotation(A->Left); //将A与C做左单旋,C被返回 return SingleLeftRotation(A); } AVLTree DoubleRightLeftRotation(AVLTree A) { //A必须有一个右子节点B,且B必须有一个左子节点C //将B,C做左单旋,C被返回 A->Right = SingleLeftRotation(A->Right); //将A,C做右单旋,C被返回 return SingleRightRotation(A); } //将x插入到AVL树中,并且返回调整后的AVL树 AVLTree Insert(AVLTree T, ElementType x) { if (!T) { //若为空树,则新建包含一个结点的树 T = (AVLTree)malloc(sizeof(struct AVLNode)); T->Data = x; T->Left = T->Right = NULL; T->Height = 0; } else if (x<T->Data) { //插入T的左子树 T->Left = Insert(T->Left,x); //如果需要左旋 if (GetTreeHeight(T->Left)-GetTreeHeight(T->Right)==2) { if (x < T->Left->Data) //需要左单旋 { T = SingleLeftRotation(T); } else T = DoubleLeftRightRotation(T); //左-右双旋 } } else if (x>T->Data) { T->Right = Insert(T->Right,x); //如果需要右旋 if (GetTreeHeight(T->Left)-GetTreeHeight(T->Right)==-2) { if (x>T->Right->Data) //右单旋 { T = SingleRightRotation(T); } else { T = DoubleRightLeftRotation(T); //右-左双旋 } } } // else x==T->Data 无需插入 //别忘了更新树高 T->Height = Max(GetTreeHeight(T->Left), GetTreeHeight(T->Right)) + 1; return T; } static int FindMin(AVLTree T){ if (T == NULL){ return -1; } while (T->Left != NULL){ T = T->Left; } return T->Data; } //返回-1表示,树中没有该数据,删除失败, int Delete(AVLTree *T, ElementType D){ //指针的指针 static Position tmp; if (*T == NULL){ return -1; } else{ //找到要删除的节点 if (D == (*T)->Data){ //删除的节点左右子支都不为空,一定存在前驱节点 if ((*T)->Left != NULL && (*T)->Right != NULL){ D = FindMin((*T)->Right);//找后继替换 (*T)->Data = D; Delete(&(*T)->Right, D);//然后删除后继节点,一定成功 //在右子支中删除,删除后有可能左子支比右子支高度大2 if (GetHeight((*T)->Left) - GetHeight((*T)->Left) == 2){ //判断哪一个左子支的的两个子支哪个比较高 if (GetHeight((*T)->Left->Left) >= GetHeight((*T)->Left->Right)){ *T=SingleRightRotation(*T); } else{ *T = DoubleLeftRightRotation(*T); /*LeftRotate(&(*T)->left); RightRotate(T);*/ } } } else if ((*T)->Left == NULL){//左子支为空 tmp = (*T); (*T) = tmp->Right; free(tmp); return 0; } else if ((*T)->Right == NULL){//右子支为空 tmp = (*T); (*T) = tmp->Right; free(tmp); return 0; } } else if (D > (*T)->Data){//在右子支中寻找待删除的节点 if (Delete(&(*T)->Right, D) == -1){ return -1;//删除失败,不需要调整,直接返回 } if (GetHeight((*T)->Left) - GetHeight((*T)->Right) == 2){ if (GetHeight((*T)->Left->Left) >= GetHeight((*T)->Left->Right)){ *T=SingleRightRotation(*T); } else{ *T = DoubleLeftRightRotation(*T); /*LeftRotate(&(*T)->left); RightRotate(T);*/ } } } else if (D < (*T)->Data){//在左子支中寻找待删除的节点 if (Delete(&(*T)->Left, D) == -1){ return -1; } if (GetHeight((*T)->Right) - GetHeight((*T)->Right) == 2){ if (GetHeight((*T)->Right->Right) >= GetHeight((*T)->Right->Left)){ *T=SingleLeftRotation(*T); } else{ *T = DoubleRightLeftRotation(*T); /*RightRotate(&(*T)->right); LeftRotate(T);*/ } } } } //更新当前节点的高度 (*T)->Height = Max(GetHeight((*T)->Left), GetHeight((*T)->Right)) + 1; //printf("%d\n", (*T)->Data); return 0; } int main() { int N,data; AVLTree root=nullptr; scanf("%d", &N); for (int i = 0; i < N;i++) { scanf("%d", &data); root = Insert(root, data); } printf("%d\n",root->Data); Delete(&root, 70); printf("%d\n", root->Data); return 0; }
AVL树原理及实现 +B树
04-树5 Root of AVL Tree + AVL树操作集
标签:tle amp base ima spec chm html main any
原文地址:http://www.cnblogs.com/ranjiewen/p/6657964.html