码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj[2655] calc

时间:2017-04-02 18:40:58      阅读:133      评论:0      收藏:0      [点我收藏+]

标签:solution   bzoj   turn   时间   lag   logs   递推   序列   ret   

Description

  一个序列a1,...,an是合法的,当且仅当:
  长度为给定的n。
  a1,...,an都是[1,A]中的整数。
  a1,...,an互不相等。
  一个序列的值定义为它里面所有数的乘积,即a1a2...an。
  求所有不同合法序列的值的和。
  两个序列不同当且仅当他们任意一位不一样。
  输出答案对一个数mod取余的结果。

Input

  一行3个数,A,n,mod。意义为上面所说的。

Output

  一行结果。

Sample Input

9 7 10007

Sample Output

3611

HINT

数据规模和约定

  0:A<=10,n<=10。

  1..3:A<=1000,n<=20.

  4..9:A<=10^9,n<=20

  10..19:A<=10^9,n<=500。

  全部:mod<=10^9,并且mod为素数,mod>A>n+1

 Solution

可以得出一个时间复杂度爆炸的dp方程

f[i][j] = f[i - 1][j - 1] * j + f[i - 1][j]

f[i][j]表示从区间[1,j]中选出i个数得出的序列的乘积和

所以把算出500递推值,之后用lagrange插值拟合多项式,再把A带进去求值就好

#include <stdio.h>
typedef long long ll;
int m, n, p, tot;
ll f[1510][510], fac[510], x[1010], y[1010];
ll Pow(register ll t, register int k)
	{
	register ll tmp = 1;
	for(; k; k >>= 1, t = t * t % p) if(k & 1) tmp = tmp * t % p;
	return tmp;
	}
ll Lagrange()
	{
	ll ans = 0, a = 1, b;
	for(register int i = 0; i < tot; i++) a = a * (m - x[i] + p) % p;
	for(register int i = 0; i < tot; ans = (ans + a * Pow(b, p - 2) % p * y[i]) % p, i++)
		{
		b = (m - x[i] + p) % p;
		for(register int j = 0; j < tot; j++) if(i != j) b = b * (x[i] - x[j] + p) % p;
		}
	return ans;
	}
int main()
	{
	scanf("%d%d%d", &m, &n, &p);
	fac[0] = 1; for(register int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p;
	f[0][0] = 1; for(register int i = 1; i <= n * 3 + 5; i++)
					for(register int j = 0; j <= n + 5; j++)
					 	f[i][j] = j ? (f[i - 1][j - 1] * i + f[i - 1][j]) % p : f[i - 1][j];
	for(register int i = 1; tot <= (n << 1 | 1); i++)
		if(f[i][n] && i ^ m) x[tot] = i, y[tot++] = f[i][n];
	printf("%lld\n", Lagrange() * fac[n] % p);
	return 0;
	}

  

bzoj[2655] calc

标签:solution   bzoj   turn   时间   lag   logs   递推   序列   ret   

原文地址:http://www.cnblogs.com/keshuqi/p/6659397.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!