码迷,mamicode.com
首页 > 其他好文 > 详细

TreeMap源码剖析

时间:2017-04-03 21:56:02      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:not   doc   jdk1.7   word   修复   变量   iterator   分享   二叉树   

 

注:以下源码基于jdk1.7.0_11技术分享

之前介绍了一系列Map集合中的具体实现类,包括HashMap,HashTable,LinkedHashMap。这三个类都是基于哈希表实现的,今天我们介绍另一种Map集合,TreeMap。TreeMap是基于红黑树实现的。

介绍TreeMap之前, 回顾下红黑树的性质 

首先,我们要明确,红黑树是一种二叉排序树,而且是平衡二叉树。因而红黑树具有排序树的所有特点,任意结点的左子树(如果有的话)的值比该结点小,右子树(如果有的话)的值比该结点大。二叉排序树各项操作的平均时间复杂度为O(logn),但是最坏情况下,二叉排序树会退化成单链表,此时时间复杂度为O(n),红黑树在二叉排序树的基础上,对其增加了一系列约束,使得其尽可能地平衡, 红黑树的查询和更新的时间复杂度为O(logn)。

红黑树的五条性质:

1.每个结点要么是红色,要么是黑色;

2.根结点为黑色;

3.叶结点为黑色(空结点);

4.若一个结点为红色,则其子结点为黑色;

5.每个叶结点到根结点的路径中黑色结点的数目一致(黑高度相同)。

红黑树的查询操作与二叉排序树相同,重点是其插入和删除操作。红黑树的插入和删除操作在二叉排序树的基础上增加了修复操作,因为插入和删除可能会导致树不再满足红黑树性质,这时候会通过 着色、旋转 操作对其进行修复。

下面来看TreeMap的实现。

类声明:

public class TreeMap<K,V>
    extends AbstractMap<K,V>
    implements NavigableMap<K,V>, Cloneable, java.io.Serializable

TreeMap同样继承AbstractMap,但是它实现了NavigableMap接口,而NavigableMap接口继承自SortedMap接口。

TreeMap有四个成员变量,其中root是红黑树的根结点, 由于红黑树的查询和更新操作需要比较,故而有个比较器comparator,默认情况下,comparator为空,这就要求我们的键必须实现Comparable接口,以定义比较规则。

private final Comparator<? super K> comparator;//比较器
 private transient Entry<K,V> root = null;//树根
    /**
     * The number of entries in the tree
     */
 private transient int size = 0;//大小
    /**
     * The number of structural modifications to the tree.
     */
 private transient int modCount = 0;//修改次数

构造器:

public TreeMap() {
		comparator = null;//比较器为空
	}

	public TreeMap(Comparator<? super K> comparator) {//传入比较器
		this.comparator = comparator;
	}

	public TreeMap(Map<? extends K, ? extends V> m) {
		comparator = null;
		putAll(m);
	}

	public TreeMap(SortedMap<K, ? extends V> m) {
		comparator = m.comparator();
		try {
			buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
		} catch (java.io.IOException cannotHappen) {
		} catch (ClassNotFoundException cannotHappen) {
		}
	}
在查看TreeMap的查询和更新操作之前,我们先看下Entry的实现,其实我们都可以猜到, Entry既然是TreeMap存储的结点,那么其 必然包括如下几个域:数据(键、值)、父结点、左孩子、右孩子、颜色。

事实正是如此:

static final class Entry<K,V> implements Map.Entry<K,V> {
		K key;//键
		V value;//值
		Entry<K,V> left = null;//左孩子
		Entry<K,V> right = null;//右孩子
		Entry<K,V> parent;//父结点
		boolean color = BLACK;//默认颜色
		/**
		 * Make a new cell with given key, value, and parent, and with
		 * {@code null} child links, and BLACK color.
		 */
		Entry(K key, V value, Entry<K,V> parent) {
			this.key = key;
			this.value = value;
			this.parent = parent;
		}
		public K getKey() {
			return key;
		}
		public V getValue() {
			return value;
		}
		public V setValue(V value) {
			V oldValue = this.value;
			this.value = value;
			return oldValue;
		}
		public boolean equals(Object o) {
			if (!(o instanceof Map.Entry))
				return false;
			Map.Entry<?,?> e = (Map.Entry<?,?>)o;
			return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
		}
		public int hashCode() {
			int keyHash = (key==null ? 0 : key.hashCode());
			int valueHash = (value==null ? 0 : value.hashCode());
			return keyHash ^ valueHash;
		}
		public String toString() {
			return key + "=" + value;
		}
	}

下面来看put方法:

public V put(K key, V value) {//向红黑树中插入键值对
		Entry<K,V> t = root;
		if (t == null) {//如果树为空
			compare(key, key); // type (and possibly null) check
			root = new Entry<>(key, value, null);
			size = 1;
			modCount++;
			return null;
		}
		int cmp;
		Entry<K,V> parent;//父结点
		// split comparator and comparable paths
		Comparator<? super K> cpr = comparator;
		if (cpr != null) {//优先通过比较器比较两个结点的大小
			do {
				parent = t;
				cmp = cpr.compare(key, t.key);
				if (cmp < 0)//待插入结点小于当前结点
					t = t.left;//进入左子树
				else if (cmp > 0)//待插入结点大于当前结点
					t = t.right;//进入右子树
				else//当前结点等于待插入结点,覆盖原值
					return t.setValue(value);
			} while (t != null);
		}
		else {//如果没有定义比较器,那么key必须实现Comparable接口
			if (key == null)//不允许空键
				throw new NullPointerException();
			Comparable<? super K> k = (Comparable<? super K>) key;
			do {
				parent = t;
				cmp = k.compareTo(t.key);
				if (cmp < 0)
					t = t.left;//进入左子树
				else if (cmp > 0)
					t = t.right;//进入右子树
				else
					return t.setValue(value);//覆盖原值
			} while (t != null);
		}
		//找到插入点之后,创建新结点,插入之。
		Entry<K,V> e = new Entry<>(key, value, parent);
		if (cmp < 0)//判断是挂到左边还是右边
			parent.left = e;
		else
			parent.right = e;
		fixAfterInsertion(e);//进行着色和旋转等操作修复红黑树
		size++;
		modCount++;
		return null;
	}

明确以下几点:

1.TreeMap的查询和更新操作都涉及到比较操作,故而TreeMap的键必须实现Comparable接口或者构造时得传入比较器(既实现了Comparable接口又传入了比较器情况下,比较器优先);

2.put操作不允许null键,但是值(value)允许为null;

3.键重复的情况下,新值会覆盖掉旧值。

再看get方法:

public V get(Object key) {//查询操作
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }

调用getEntry方法查询指定键值:

final Entry<K,V> getEntry(Object key) {//跟普通二叉排序树的查询操作一致
		// Offload comparator-based version for sake of performance
		if (comparator != null)//存在比较器
			return getEntryUsingComparator(key);//根据比较器定义的比较规则查找
		if (key == null)
			throw new NullPointerException();
		Comparable<? super K> k = (Comparable<? super K>) key;
		Entry<K,V> p = root;
		while (p != null) {//根据Comparable接口定义的比较规则查找
			int cmp = k.compareTo(p.key);
			if (cmp < 0)//待查结点在左子树
				p = p.left;
			else if (cmp > 0)//待查结点在右子树
				p = p.right;
			else
				return p;
		}
		return null;//没找到
	}
 final Entry<K,V> getEntryUsingComparator(Object key) {//根据比较器定义的比较规则查找
		K k = (K) key;
		Comparator<? super K> cpr = comparator;
		if (cpr != null) {
			Entry<K,V> p = root;
			while (p != null) {
				int cmp = cpr.compare(k, p.key);
				if (cmp < 0)
					p = p.left;
				else if (cmp > 0)
					p = p.right;
				else
					return p;
			}
		}
		return null;
	}

对比HashMap近乎O(1)的查找复杂度,TreeMap显得略有不足。

再看remove删除操作:

public V remove(Object key) {
		Entry<K,V> p = getEntry(key);//首先找到待删结点
		if (p == null)
			return null;
		V oldValue = p.value;
		deleteEntry(p);//删除结点
		return oldValue;
	}

虽然看上去寥寥几行代码,其实逻辑十分复杂,具体体现在删除结点后的恢复操作。

private void deleteEntry(Entry<K,V> p) {//删除一个结点
		modCount++;
		size--;
		// If strictly internal, copy successor‘s element to p and then make p
		// point to successor.
		if (p.left != null && p.right != null) {//p的左右孩子都存在
			Entry<K,V> s = successor(p);//找到p的直接后继(顺着p右子树一直向左)
			p.key = s.key;//用直接后继替代p
			p.value = s.value;
			p = s;
		} // p has 2 children
		//下面操作将释放s结点,并修复红黑树
		// Start fixup at replacement node, if it exists.
		Entry<K,V> replacement = (p.left != null ? p.left : p.right);
		if (replacement != null) {
			// Link replacement to parent
			replacement.parent = p.parent;
			if (p.parent == null)
				root = replacement;
			else if (p == p.parent.left)
				p.parent.left  = replacement;
			else
				p.parent.right = replacement;
			// Null out links so they are OK to use by fixAfterDeletion.
			p.left = p.right = p.parent = null;
			// Fix replacement
			if (p.color == BLACK)
				fixAfterDeletion(replacement);//修复红黑树
		} else if (p.parent == null) { // return if we are the only node.
			root = null;
		} else { //  No children. Use self as phantom replacement and unlink.
			if (p.color == BLACK)
				fixAfterDeletion(p);
			if (p.parent != null) {
				if (p == p.parent.left)
					p.parent.left = null;
				else if (p == p.parent.right)
					p.parent.right = null;
				p.parent = null;
			}
		}
	}

successtor函数用于找一个结点的中序后继(参见之前写的一篇如何得到一个结点的中序后继,算法一致):

迭代器遍历操作正是基于successtor操作完成的。 所以遍历TreeMap得到的键值对是有序的。

static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {//查找中序后继
		if (t == null)
			return null;
		else if (t.right != null) {//如果存在右子树
			Entry<K,V> p = t.right;
			while (p.left != null)//顺着右子树,向左搜索
				p = p.left;
			return p;
		} else {//如果不存在右子树
			Entry<K,V> p = t.parent;//顺着父亲,向上搜索
			Entry<K,V> ch = t;
			while (p != null && ch == p.right) {//如果当前结点是父结点的右孩子,那么继续向上
				ch = p;
				p = p.parent;
			}
			return p;
		}
	}

对称地,还有个查找直接前驱的函数:

static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
		if (t == null)
			return null;
		else if (t.left != null) {//若存在左子树
			Entry<K,V> p = t.left;
			while (p.right != null)//顺着左子树,向右搜索
				p = p.right;
			return p;
		} else {
			Entry<K,V> p = t.parent;
			Entry<K,V> ch = t;
			while (p != null && ch == p.left) {
				ch = p;
				p = p.parent;
			}
			return p;
		}
	}

注:文章故意忽略了更新操作中涉及到的红黑树修复动作(着色,旋转),此部分内容较为复杂,作者目前也没有完全吃透。

总结:

1.TreeMap的实现基于红黑树;

2.TreeMap不允许插入null键,但允许null值;

3.TreeMap线程不安全;

4.插入结点时,若键重复,则新值会覆盖旧值;

5.TreeMap要求key必须实现Comparable接口,或者初始化时传入Comparator比较器;

6.遍历TreeMap得到的结果集是有序的(中序遍历);

7.TreeMap的各项操作的平均时间复杂度为O(logn).

TreeMap源码剖析

标签:not   doc   jdk1.7   word   修复   变量   iterator   分享   二叉树   

原文地址:http://www.cnblogs.com/zedosu/p/6663734.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!