标签:速度慢 监控 监视 发送 scheme 信息 arc 系统架构 置配
公司是做社交相关产品的,社交类产品对搜索功能需求要求就比较高,需要根据用户城市、用户ID昵称等进行搜索。
项目原先的搜索接口采用SQL查询的方式实现,数据库表采用了按城市分表的方式。但随着业务的发展,搜索接口调用频次越来越高,搜索接口压力越来越大,搜索数据库经常崩溃,从而导致搜索功能经常不能使用。
从上面的系统架构图可以看出,当用户修改资料时,接口会修改用户库信息,接着触发器会将改变的用户信息写入临时表。定时脚本每隔1分钟扫描一次临时表,将变更的数据写入到搜索库中。当用户再次请求搜索接口时,就可以搜索到最新的数据。
从技术层面分析,原搜索系统的设计有以下缺点:
我们总结一下新搜索系统需要解决的几个问题:
海量请求。要扛得起海量的搜索请求,可以使用ElasticSearch来实现,它是在Lucene的基础上进行封装的一个开源项目,它将Lucene复杂的原理以及API封装起来,对外提供了一个易用的API接口。ElasticSearch现在已经广泛地被许多公司使用,其中包括:爱奇艺、百姓网、58到家等公司。
实时搜索。阿里有一个开源项目Canal,就是用来解决这个问题的,Canal项目利用了MySQL数据库主从同步的原理,将Canal Server模拟成一台需要同步的从库,从而让主库将binlog日志流发送到Canal Server接口。Canal项目对binlog日志的解析进行了封装,我们可以直接得到解析后的数据,而不需要理会binlog的日志格式。而且Canal项目整合了zookeeper,整体实现了高可用,可伸缩性强,是一个不错的解决方案。
经过一段时间的技术预研,我们设计了整个搜索技术架构:
从架构图可以看出整个系统分为两大部分:
因为考虑到未来可能有其他项目需要监控数据库某些表的变化,因此我们将Canal获取MySQL数据变更部分做成一个公用的平台。当有其他业务需要增加监控的表时,我们可以直接修改配置文件,重启服务器即可完成添加,极大地提高了开发效率。
在这一部分中,主要分为两大部分:Canal Server 和 Canal Client。
Canal Server端。Canal Server伪装成MySQL的一个从库,使主库发送binlog日志给 Canal Server,Canal Server 收到binlog消息之后进行解析,解析完成后将消息直接发送给Canal Client。在Canal Server端可以设置配置文件进行具体scheme(数据库)和table(数据库表)的筛选,从而实现动态地增加对数据库表的监视。
Canal Client端。Canal Client端接收到Canal Server的消息后直接将消息存到Kafka指定Partition中,并将最新的binlogid发送给zookeeper集群保存。
Canal技术变更平台在获取到对应的数据库变更消息后会将其放到指定的Kafka分片里,具体的业务项目需要到指定的Kafka片区里消费对应的数据变更消息,之后根据具体的业务需求进行处理。
因为Canal变化是根据表为最小单位进行地,因此我在实现方面定义了一个以表为处理单位的MsgDealer
接口:
public interface MsgDealer {
void deal(CanalMsgVo canalMsgVo);
}
搜索库涉及对5个表的监视,因此我实现了5个对应的处理类:
针对不同表的数据变化,自动调用不同的实现类进行处理。
标签:速度慢 监控 监视 发送 scheme 信息 arc 系统架构 置配
原文地址:http://www.cnblogs.com/Leo_wl/p/6687598.html