码迷,mamicode.com
首页 > 其他好文 > 详细

Hackerrank--Kundu and Tree

时间:2014-08-23 22:55:51      阅读:309      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   os   io   strong   for   ar   

题目链接


Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a tob, vertex b to c and vertex c to a . Note that (a,b,c), (b,a,c) and all such permutations will be considered as the same triplet.

If the answer is greater than 109 + 7, print the answer modulo (%) 109 + 7.

Input Format
The first line contains an integer N, i.e., the number of vertices in tree. 
The next N-1 lines represent edges: 2 space separated integers denoting an edge followed by a color of the edge. A color of an edge is denoted by a small letter of English alphabet, and it can be either red(r) or black(b).

Output Format
Print a single number i.e. the number of triplets.

Constraints
1 ≤ N ≤ 105
A node is numbered between 1 to N.

Sample Input

5
1 2 b
2 3 r
3 4 r
4 5 b

Sample Output

4

Explanation

Given tree is something like this.
bubuko.com,布布扣

(2,3,4) is one such triplet because on all paths i.e 2 to 3, 3 to 4 and 2 to 4 there is atleast one edge having red color.
(2,3,5), (1,3,4) and (1,3,5) are other such triplets. 
Note that (1,2,3) is NOT a triplet, because the path from 1 to 2 does not have an edge with red color.

大体题意:给定一棵树,有两种树边,一种是红色(‘r‘), 另一种是黑色(‘b‘), 在树中找到三个点,使得没两个点之间的路径上都有红色的边,

问存在多少种不同的找法。(a, b, c和 b a c只算一种)

思路:如果有满足要求的3个点a,b,c,若把a到b中的红色边去掉,那么a和b将不连通,同理,如果把a到b,b到c,a到c中

的红色边都去掉,那么a,b,c将属于不同的连通分量。这样就转化为有k堆点,每堆有a[i]个,从这k堆中选3个点,并且满足3个点

两两不在同一堆中,问有多少中取法。因此,就有如下方法:

1 long long sum = 0;
2 for (int i = 1; i <= k; i++) 
3     for (int j = i + 1; j <= k; j++) 
4         for (int t = j + 1; t <= k; t++)
5             sum += a[i] * a[j] * a[t];

但是复杂度为O(n^3),显然无法满足题目要求。必须优化到O(n)的复杂度。think about it, how to optimize the solution....???

Accepted Code:

 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <vector>
 5 using namespace std;
 6 
 7 const int MOD = 1000000000 + 7;
 8 const int MAX_N = 100005;
 9 typedef long long LL;
10 vector<int> G[MAX_N];
11 int N, cmp[MAX_N];
12 LL cnt[MAX_N], A[MAX_N], B[MAX_N], C[MAX_N];
13 bool vis[MAX_N];
14 
15 void dfs(int u, int k) {
16     cmp[u] = k; vis[u] = true;
17     for (int i = 0; i < G[u].size(); i++) {
18         int v = G[u][i];
19         if (!vis[v]) dfs(v, k); 
20     }
21 }
22 int main(void) { 
23      while (cin >> N) { 
24          for (int i = 1; i <= N; i++) G[i].clear(); 
25          for (int i = 0; i < N; i++) { 
26              int a, b; char c; cin >> a >> b >> c; 
27              if (c != r) G[a].push_back(b), G[b].push_back(a);
28         }
29         memset(vis, false, sizeof(vis));
30         int k = 1; //连通分量个数
31         for (int i = 1; i <= N; i++) if (!vis[i]) dfs(i, k++);
32         k--;
33         memset(cnt, 0, sizeof(cnt)); //每个连通分量点的个数
34         for (int i = 1; i <= N; i++) cnt[cmp[i]]++; 
35         A[k] = cnt[k]; //A[i] = cnt[i] + cnt[i + 1] + ... + cnt[k]
36         for (int i = k - 1; i >= 3; i--) A[i] = (A[i + 1] + cnt[i]) % MOD;
37         for (int i = 2; i < k; i++) B[i] = (cnt[i] * A[i + 1]) % MOD; //B[i] = cnt[i] * A[i + 1].
38         C[k - 1] = B[k - 1]; //C[i] = B[i] + B[i + 1] + ... + B[k - 1]
39         for (int i = k - 2; i >= 2; i--) C[i] = (C[i + 1] + B[i]) % MOD;
40         LL sum = 0;
41         for (int i = 1; i <= k - 2; i++) sum = (sum + cnt[i] * C[i + 1]) % MOD;
42         cout << sum << endl;
43     }
44     return 0;
45 }

 

Hackerrank--Kundu and Tree

标签:style   blog   http   color   os   io   strong   for   ar   

原文地址:http://www.cnblogs.com/Stomach-ache/p/3931848.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!