标签:springmvc+mybatis dubbo+zookeeper restful redis分布式缓存 kafka bootstrap html5
什么是MyBatis
MyBatis是支持定制化SQL、存储过程以及高级映射的优秀的持久层框架。MyBatis 避免了几乎所有的 JDBC 代码和手工设置参数以及抽取结果集。MyBatis 使用简单的 XML 或注解来配置和映射基本体,将接口和 Java 的 POJOs(Plain Old Java Objects,普通的 Java对象)映射成数据库中的记录。
虽然在使用MyBatis时一般都会使用XML文件,但是本文为了分析程序的简单性,简单的测试程序将不包含XML配置,该测试程序包含一个接口、一个启动类:
public interface UserMapper { @Select("SELECT * FROM user WHERE id = #{id}") User selectUser(int id); }public class Test2 { public static void main(String[] args) { SqlSessionFactory sqlSessionFactory = initSqlSessionFactory(); SqlSession session = sqlSessionFactory.openSession(); try { User user = (User) session.selectOne( "org.mybatis.example.UserMapper.selectUser", 1); System.out.println(user.getUserAddress()); System.out.println(user.getUserName()); } finally { session.close(); } } private static SqlSessionFactory initSqlSessionFactory() { DataSource dataSource = new PooledDataSource("com.mysql.jdbc.Driver", "jdbc:mysql://127.0.0.1:3306/jdbc", "root", ""); TransactionFactory transactionFactory = new JdbcTransactionFactory(); Environment environment = new Environment("development", transactionFactory, dataSource); Configuration configuration = new Configuration(environment); configuration.addMapper(UserMapper.class); SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder() .build(configuration); return sqlSessionFactory; } }
UserMapper是一个接口,我们在构建sqlSessionFactory时通过configuration.addMapper(UserMapper.class)把该接口注册进了sqlSessionFactory中。从上面的代码中我们可以看出,要使用MyBatis,我们应该经过以下步骤:1、创建sqlSessionFactory(一次性操作);2、用sqlSessionFactory对象构造sqlSession对象;3、调用sqlSession的相应方法;4、关闭sqlSession对象。
在main方法中,我们没有配置sql,也没有根据查询结果拼接对象,只需在调用sqlSession方法时传入一个命名空间以及方法参数参数即可,所有的操作都是面向对象的。在UserMapper接口中,我们定制了自己的sql,MyBatis把书写sql的权利给予了我们,方便我们进行sql优化及sql排错。
直接使用JDBC是很痛苦的,JDBC连接数据库包含以下几个基本步骤:1、注册驱动 ;2、建立连接(Connection);3、创建SQL语句(Statement);4、执行语句;5、处理执行结果(ResultSet);6、释放资源,示例代码如下:
test() SQLException{ .forName(); Connection conn = DriverManager.getConnection(, , ); Statement st = conn.createStatement(); ResultSet rs = st.executeQuery(); (rs.()) { User user = User(rs.getObject(), rs.getObject()); } rs.close(); st.close(); conn.close(); }
可以看到与直接使用JDBC相比,MyBatis为我们简化了很多工作:
1、把创建连接相关工作抽象成一个sqlSessionFactory对象,一次创建多次使用;
2、把sql语句从业务层剥离,代码逻辑更加清晰,增加可维护性;
3、自动完成结果集处理,不需要我们编写重复代码。
但是,我们应该知道的是,框架虽然能够帮助我们简化工作,但是框架底层的代码肯定还是最基础的JDBC代码,因为这是Java平台连接数据库的通用方法,今天我将分析一下MyBatis源码,看看MyBatis是如何把这些基础代码封装成一个框架的。
我们最终调用的是sqlSession对象上的方法,所以我们先跟踪sqlSession的创建方法:sqlSessionFactory.openSession(),最终这个方法会调用到DefaultSqlSessionFactory的以下方法:
private SqlSession openSessionFromDataSource(ExecutorType execType, TransactionIsolationLevel level, boolean autoCommit) { Transaction tx = null; try { final Environment environment = configuration.getEnvironment(); final TransactionFactory transactionFactory = getTransactionFactoryFromEnvironment(environment); tx = transactionFactory.newTransaction(environment.getDataSource(), level, autoCommit); final Executor executor = configuration.newExecutor(tx, execType); return new DefaultSqlSession(configuration, executor, autoCommit); } catch (Exception e) { closeTransaction(tx); // may have fetched a connection so lets call close() throw ExceptionFactory.wrapException("Error opening session. Cause: " + e, e); } finally { ErrorContext.instance().reset(); } }
最终返回的对象是一个DefaultSqlSession对象,在调试模式下, 我们看到autoCommit为false,executor为CachingExecutor类型,在CachingExecutor里面有属性delegate,其类型为simpleExecutor:
现在,我们跟进DefaultSqlSession的selectOne()方法,查看该方法的调用流程,selectOne()方法又会调用selectList()方法:
public <E> List<E> selectList(String statement, Object parameter, RowBounds rowBounds) { try { MappedStatement ms = configuration.getMappedStatement(statement); List<E> result = executor.query(ms, wrapCollection(parameter), rowBounds, Executor.NO_RESULT_HANDLER); return result; } catch (Exception e) { throw ExceptionFactory.wrapException("Error querying database. Cause: " + e, e); } finally { ErrorContext.instance().reset(); } }
可以看到要得到查询结果,最终还是要调用executor上的query方法,这里的executor是CachingExecutor实例,跟进程序得到如下代码:
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException { BoundSql boundSql = ms.getBoundSql(parameterObject); CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql); return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql); } public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException { Cache cache = ms.getCache(); if (cache != null) { flushCacheIfRequired(ms); if (ms.isUseCache() && resultHandler == null) { ensureNoOutParams(ms, parameterObject, boundSql); @SuppressWarnings("unchecked") List<E> list = (List<E>) tcm.getObject(cache, key); if (list == null) { list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql); tcm.putObject(cache, key, list); // issue #578. Query must be not synchronized to prevent deadlocks } return list; } } return delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql); }
MyBatis框架首先生成了一个boundSql和CacheKey,在boundSql中包含有我们传入的sql语句:
生成boundSql和CacheKey后会调用一个重载函数,在重载函数中,我们会检测是否有缓存,这个缓存是MyBatis的二级缓存,我们没有配置,那么直接调用最后一句delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql),前面说过这个delagate其实就是simpleExecutor,跟进去查看一下:
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException { ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId()); if (closed) throw new ExecutorException("Executor was closed."); if (queryStack == 0 && ms.isFlushCacheRequired()) { clearLocalCache(); } List<E> list; try { queryStack++; list = resultHandler == null ? (List<E>) localCache.getObject(key) : null; if (list != null) { handleLocallyCachedOutputParameters(ms, key, parameter, boundSql); } else { list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql); } } finally { queryStack--; } if (queryStack == 0) { for (DeferredLoad deferredLoad : deferredLoads) { deferredLoad.load(); } deferredLoads.clear(); // issue #601 if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) { clearLocalCache(); // issue #482 } } return list; }
关键代码是以下三行:
list = resultHandler == null ? (List<E>) localCache.getObject(key) : null; if (list != null) { handleLocallyCachedOutputParameters(ms, key, parameter, boundSql); } else { list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql); }
首先尝试从localCache中根据key得到List,这里的localCache是MyBatis的一级缓存,如果得不到则调用queryFromDatabase()从数据库中查询:
private <E> List<E> queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException { List<E> list; localCache.putObject(key, EXECUTION_PLACEHOLDER); try { list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql); } finally { localCache.removeObject(key); } localCache.putObject(key, list); if (ms.getStatementType() == StatementType.CALLABLE) { localOutputParameterCache.putObject(key, parameter); } return list; }
其中关键代码是调用doQuery()代码,SimpleExecutor的doQuery()方法如下:
public <E> List<E> doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) throws SQLException { Statement stmt = null; try { Configuration configuration = ms.getConfiguration(); StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, resultHandler, boundSql); stmt = prepareStatement(handler, ms.getStatementLog()); return handler.<E>query(stmt, resultHandler); } finally { closeStatement(stmt); } }
调用了prepareStatement方法,该方法如下:
private Statement prepareStatement(StatementHandler handler, Log statementLog) throws SQLException { Statement stmt; Connection connection = getConnection(statementLog); stmt = handler.prepare(connection); handler.parameterize(stmt); return stmt; }
终于,我们看到熟悉的代码了,首先得到Connection,然后从Connection中得到Statement,同时在调试模式下我们看到,我们的sql语句已经被设置到stmt中了:
现在Statement对象有了,sql也设置进去了,就只差执行以及对象映射了,继续跟进代码,我们会跟踪到org.apache.ibatis.executor.statement.
PreparedStatementHandler类的executor方法:
public <E> List<E> query(Statement statement, ResultHandler resultHandler) throws SQLException { PreparedStatement ps = (PreparedStatement) statement; ps.execute(); return resultSetHandler.<E> handleResultSets(ps); }
在这里,调用了ps.execute()方法执行sql,接下来调用的resultSetHandler.<E> handleResultSets(ps)方法明显是对结果集进行封装,我就不继续跟进了。
上面一部分介绍了MyBatis执行的整体流程,这一部分打算讨论一个具体话题:MyBatis的数据库连接池。
我们知道,每次连接数据库时都创建Connection是十分耗费性能的,所以我们在写JDBC代码时,一般都会使用数据库连接池,把用过的Connection不是直接关闭,而是放入数据库连接池中,方便下次复用,开源的数据库连接池有DBCP、C3P0等,MyBatis也实现了自己的数据库连接池,在这一节我将探索一下MyBatis实现的数据库连接池源码。
跟进上一节的getConnection()方法,我们最终会进入JdbcTransaction的getConnection()方法,getConnection()方法又会调用openConnection()方法,而openConnection()又将调用dataSource的getConnection()方法:
public Connection getConnection() throws SQLException { if (connection == null) { openConnection(); } return connection; }protected void openConnection() throws SQLException { if (log.isDebugEnabled()) { log.debug("Opening JDBC Connection"); } connection = dataSource.getConnection(); if (level != null) { connection.setTransactionIsolation(level.getLevel()); } setDesiredAutoCommit(autoCommmit); }
这里的dataSource是PooledDataSource类型,跟进查看源码如下:
public Connection getConnection() throws SQLException { return popConnection(dataSource.getUsername(), dataSource.getPassword()).getProxyConnection(); } private PooledConnection popConnection(String username, String password) throws SQLException { //暂不分析 }
可以看到,在这里我们返回的对象其实已经不是原生的Connection对象了,而是一个动态代理对象,是PooledConnection的一个属性,所有对对Connection对象的操作都将被PooledConnection拦截,我们可以查看PooledConnection的定义如下:
class PooledConnection implements InvocationHandler { private static final String CLOSE = "close"; private static final Class<?>[] IFACES = new Class<?>[] { Connection.class }; private int hashCode = 0; private PooledDataSource dataSource; private Connection realConnection; private Connection proxyConnection; private long checkoutTimestamp; private long createdTimestamp; private long lastUsedTimestamp; private int connectionTypeCode; private boolean valid; public PooledConnection(Connection connection, PooledDataSource dataSource) { this.hashCode = connection.hashCode(); this.realConnection = connection; this.dataSource = dataSource; this.createdTimestamp = System.currentTimeMillis(); this.lastUsedTimestamp = System.currentTimeMillis(); this.valid = true; this.proxyConnection = (Connection) Proxy.newProxyInstance( Connection.class.getClassLoader(), IFACES, this); } public void invalidate() { valid = false; } public boolean isValid() { return valid && realConnection != null && dataSource.pingConnection(this); } public Connection getRealConnection() { return realConnection; } public Connection getProxyConnection() { return proxyConnection; } public int getRealHashCode() { if (realConnection == null) { return 0; } else { return realConnection.hashCode(); } } public int getConnectionTypeCode() { return connectionTypeCode; } public void setConnectionTypeCode(int connectionTypeCode) { this.connectionTypeCode = connectionTypeCode; } public long getCreatedTimestamp() { return createdTimestamp; } public void setCreatedTimestamp(long createdTimestamp) { this.createdTimestamp = createdTimestamp; } public long getLastUsedTimestamp() { return lastUsedTimestamp; } public void setLastUsedTimestamp(long lastUsedTimestamp) { this.lastUsedTimestamp = lastUsedTimestamp; } public long getTimeElapsedSinceLastUse() { return System.currentTimeMillis() - lastUsedTimestamp; } public long getAge() { return System.currentTimeMillis() - createdTimestamp; } public long getCheckoutTimestamp() { return checkoutTimestamp; } public void setCheckoutTimestamp(long timestamp) { this.checkoutTimestamp = timestamp; } public long getCheckoutTime() { return System.currentTimeMillis() - checkoutTimestamp; } public int hashCode() { return hashCode; } public boolean equals(Object obj) { if (obj instanceof PooledConnection) { return realConnection.hashCode() == (((PooledConnection) obj).realConnection .hashCode()); } else if (obj instanceof Connection) { return hashCode == obj.hashCode(); } else { return false; } } public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { String methodName = method.getName(); if (CLOSE.hashCode() == methodName.hashCode() && CLOSE.equals(methodName)) { dataSource.pushConnection(this); return null; } else { try { if (!Object.class.equals(method.getDeclaringClass())) { checkConnection(); } return method.invoke(realConnection, args); } catch (Throwable t) { throw ExceptionUtil.unwrapThrowable(t); } } } private void checkConnection() throws SQLException { if (!valid) { throw new SQLException( "Error accessing PooledConnection. Connection is invalid."); } } }
可以看到这个类暴露了很多接口检测Connection状态,例如连接是否有效,连接创建时间最近使用连接等:
这个类实现了InvocationHandler接口,最主要的一个方法如下:
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { String methodName = method.getName(); if (CLOSE.hashCode() == methodName.hashCode() && CLOSE.equals(methodName)) { dataSource.pushConnection(this); return null; } else { try { if (!Object.class.equals(method.getDeclaringClass())) { checkConnection(); } return method.invoke(realConnection, args); } catch (Throwable t) { throw ExceptionUtil.unwrapThrowable(t); } } }
可以看到,PooledConnection会拦截close方法,当客户端调用close()方法时,程序不会关闭Connection,而是会调用dataSource.pushConnection(this)方法,该方法的实现如下:
protected void pushConnection(PooledConnection conn) throws SQLException { synchronized (state) { state.activeConnections.remove(conn); if (conn.isValid()) { if (state.idleConnections.size() < poolMaximumIdleConnections && conn.getConnectionTypeCode() == expectedConnectionTypeCode) { state.accumulatedCheckoutTime += conn.getCheckoutTime(); if (!conn.getRealConnection().getAutoCommit()) { conn.getRealConnection().rollback(); } PooledConnection newConn = new PooledConnection(conn.getRealConnection(), this); state.idleConnections.add(newConn); newConn.setCreatedTimestamp(conn.getCreatedTimestamp()); newConn.setLastUsedTimestamp(conn.getLastUsedTimestamp()); conn.invalidate(); if (log.isDebugEnabled()) { log.debug("Returned connection " + newConn.getRealHashCode() + " to pool."); } state.notifyAll(); } else { state.accumulatedCheckoutTime += conn.getCheckoutTime(); if (!conn.getRealConnection().getAutoCommit()) { conn.getRealConnection().rollback(); } conn.getRealConnection().close(); if (log.isDebugEnabled()) { log.debug("Closed connection " + conn.getRealHashCode() + "."); } conn.invalidate(); } } else { if (log.isDebugEnabled()) { log.debug("A bad connection (" + conn.getRealHashCode() + ") attempted to return to the pool, discarding connection."); } state.badConnectionCount++; } } }
可以看到,首先会把Connection从活跃列表中删除,然后检测空闲列表的长度有没有达到最大长度(默认为5),若没有达到,把Connection放入空闲链表,否则关闭连接。这里的state是一个PoolState对象,该对象定义如下:
public class PoolState { protected PooledDataSource dataSource; protected final List<PooledConnection> idleConnections = new ArrayList<PooledConnection>(); protected final List<PooledConnection> activeConnections = new ArrayList<PooledConnection>(); protected long requestCount = 0; protected long accumulatedRequestTime = 0; protected long accumulatedCheckoutTime = 0; protected long claimedOverdueConnectionCount = 0; protected long accumulatedCheckoutTimeOfOverdueConnections = 0; protected long accumulatedWaitTime = 0; protected long hadToWaitCount = 0; protected long badConnectionCount = 0; public PoolState(PooledDataSource dataSource) { this.dataSource = dataSource; } public synchronized long getRequestCount() { return requestCount; } public synchronized long getAverageRequestTime() { return requestCount == 0 ? 0 : accumulatedRequestTime / requestCount; } public synchronized long getAverageWaitTime() { return hadToWaitCount == 0 ? 0 : accumulatedWaitTime / hadToWaitCount; } public synchronized long getHadToWaitCount() { return hadToWaitCount; } public synchronized long getBadConnectionCount() { return badConnectionCount; } public synchronized long getClaimedOverdueConnectionCount() { return claimedOverdueConnectionCount; } public synchronized long getAverageOverdueCheckoutTime() { return claimedOverdueConnectionCount == 0 ? 0 : accumulatedCheckoutTimeOfOverdueConnections / claimedOverdueConnectionCount; } public synchronized long getAverageCheckoutTime() { return requestCount == 0 ? 0 : accumulatedCheckoutTime / requestCount; } public synchronized int getIdleConnectionCount() { return idleConnections.size(); } public synchronized int getActiveConnectionCount() { return activeConnections.size(); } }
可以看到最终我们的Connection对象是放在ArrayList中的,该类还提供一些接口返回连接池基本信息。
好了,现在我们可以回去看看PooledDataSource的popConnection方法了:
private PooledConnection popConnection(String username, String password) throws SQLException { boolean countedWait = false; PooledConnection conn = null; long t = System.currentTimeMillis(); int localBadConnectionCount = 0; while (conn == null) { synchronized (state) { if (state.idleConnections.size() > 0) { // Pool has available connection conn = state.idleConnections.remove(0); if (log.isDebugEnabled()) { log.debug("Checked out connection " + conn.getRealHashCode() + " from pool."); } } else { // Pool does not have available connection if (state.activeConnections.size() < poolMaximumActiveConnections) { // Can create new connection conn = new PooledConnection(dataSource.getConnection(), this); @SuppressWarnings("unused") //used in logging, if enabled Connection realConn = conn.getRealConnection(); if (log.isDebugEnabled()) { log.debug("Created connection " + conn.getRealHashCode() + "."); } } else { // Cannot create new connection PooledConnection oldestActiveConnection = state.activeConnections.get(0); long longestCheckoutTime = oldestActiveConnection.getCheckoutTime(); if (longestCheckoutTime > poolMaximumCheckoutTime) { // Can claim overdue connection state.claimedOverdueConnectionCount++; state.accumulatedCheckoutTimeOfOverdueConnections += longestCheckoutTime; state.accumulatedCheckoutTime += longestCheckoutTime; state.activeConnections.remove(oldestActiveConnection); if (!oldestActiveConnection.getRealConnection().getAutoCommit()) { oldestActiveConnection.getRealConnection().rollback(); } conn = new PooledConnection(oldestActiveConnection.getRealConnection(), this); oldestActiveConnection.invalidate(); if (log.isDebugEnabled()) { log.debug("Claimed overdue connection " + conn.getRealHashCode() + "."); } } else { // Must wait try { if (!countedWait) { state.hadToWaitCount++; countedWait = true; } if (log.isDebugEnabled()) { log.debug("Waiting as long as " + poolTimeToWait + " milliseconds for connection."); } long wt = System.currentTimeMillis(); state.wait(poolTimeToWait); state.accumulatedWaitTime += System.currentTimeMillis() - wt; } catch (InterruptedException e) { break; } } } } if (conn != null) { if (conn.isValid()) { if (!conn.getRealConnection().getAutoCommit()) { conn.getRealConnection().rollback(); } conn.setConnectionTypeCode(assembleConnectionTypeCode(dataSource.getUrl(), username, password)); conn.setCheckoutTimestamp(System.currentTimeMillis()); conn.setLastUsedTimestamp(System.currentTimeMillis()); state.activeConnections.add(conn); state.requestCount++; state.accumulatedRequestTime += System.currentTimeMillis() - t; } else { if (log.isDebugEnabled()) { log.debug("A bad connection (" + conn.getRealHashCode() + ") was returned from the pool, getting another connection."); } state.badConnectionCount++; localBadConnectionCount++; conn = null; if (localBadConnectionCount > (poolMaximumIdleConnections + 3)) { if (log.isDebugEnabled()) { log.debug("PooledDataSource: Could not get a good connection to the database."); } throw new SQLException("PooledDataSource: Could not get a good connection to the database."); } } } } } if (conn == null) { if (log.isDebugEnabled()) { log.debug("PooledDataSource: Unknown severe error condition. The connection pool returned a null connection."); } throw new SQLException("PooledDataSource: Unknown severe error condition. The connection pool returned a null connection."); } return conn; }
可以看到获取Connection一共分以下几种情况:1、如果有空闲Connection,那么直接使用空闲Connection,否则2;2、如果活跃Connection没有达到活跃Connection的上限,那么创建一个新Connection并返回,否则3;3、如果达到活跃上限,且被检出的Connection检出时间过长,那么把该Connection置为失效,新创建一个Connection,否则4;4、等待空闲Connection。
至此,我们就把MyBatis的数据库连接池代码整理了一遍,其中有两个关键点:1、检出的Connection其实不是原生Connection,而是一个代理对象;2、存放Connection的容器是ArrayList,Connection的检出遵从先进先出原则。
这篇博客讲的很好,可以mark一下:minglisoft.cn/technology
首先回顾一下JDBC的事务知识。
JDBC可以操作Connection的setAutoCommit()方法,给它false参数,提示数据库启动事务,在下达一连串的SQL命令后,自行调用Connection的commit()方法,提示数据库确认(Commit)操作。如果中间发生错误,则调用rollback(),提示数据库撤销(ROLLBACK)所有执行。同时,如果仅想要撤回某个SQL执行点,则可以设置存储点(SAVEPOINT)。一个示范的事务流程如下:
Connection conn = ...;Savepoint point = null;try { conn.setAutoCommit(false); Statement stmt = conn.createStatement(); stmt.executeUpdate("INSERT INTO ..."); ... point = conn.setSavepoint(); stmt.executeUpdate("INSERT INTO ..."); ... conn.commit(); } catch (SQLException e) { e.printStackTrace(); if (conn != null) { try { if (point == null) { conn.rollback(); } else { conn.rollback(point); conn.releaseSavepoint(point); } } catch (SQLException ex) { ex.printStackTrace(); } } } finally { ... if (conn != null) { try { conn.setAutoCommit(true); conn.close(); } catch (SQLException ex) { ex.printStackTrace(); } } }
在MyBatis调用流程一节就写过,在调试模式下, 我们看到autoCommit为false, 所以每个sqlSession其实都是一个事务,这也是为什么每次做删、改、查时都必须调用commit的原因.
源码来源:minglisoft.cn/technology
标签:springmvc+mybatis dubbo+zookeeper restful redis分布式缓存 kafka bootstrap html5
原文地址:http://12819045.blog.51cto.com/12809045/1915294