码迷,mamicode.com
首页 > 其他好文 > 详细

BZOJ 3561 莫比乌斯反演

时间:2017-04-13 00:16:51      阅读:238      评论:0      收藏:0      [点我收藏+]

标签:rac   sig   gcd   lcm   莫比乌斯反演   ==   sigma   枚举   floor   

$\Sigma_{i=1}^n\Sigma_{j=1}^mlcm(i,j)^{gcd(i,j)}$
$=\Sigma_{i=1}^n\Sigma_{j=1}^m (\frac{i*j}{gcd(i,j)})^{gcd(i,j)}$
枚举gcd(i,j)=d
$=\Sigma_{d=1}^n\Sigma_{i=1}^{\lfloor \frac{n}{d}\rfloor}\Sigma_{j=1}^{\lfloor \frac{m}{d}\rfloor}(d*i*j)^d*(gcd(i,j)==1)$
$=\Sigma_{d=1}^n\Sigma_{i=1}^{\lfloor \frac{n}{d}\rfloor}\Sigma_{j=1}^{\lfloor \frac{m}{d}\rfloor}\Sigma_{k|i且k|j}(d*i*j)^d$
$=\Sigma_{d=1}^nd^d\Sigma_{t=1}^{\lfloor\frac{n}{d}\rfloor}\mu(t)[\Sigma_{i=1}^{\lfloor\frac{n}{dt}\rfloor}(it)^d\Sigma_{j=1}^{\lfloor\frac{m}{d}\rfloor}(jt)^d]$
$=\Sigma_{d=1}^nd^d\Sigma_{t=1}^{\lfloor\frac{n}{d}\rfloor}\mu(t)*t^{2d}[\Sigma_{i=1}^{\lfloor\frac{n}{dt}\rfloor}i^d\Sigma_{j=1}^{\lfloor\frac{m}{dt}\rfloor}j^d]$

BZOJ 3561 莫比乌斯反演

标签:rac   sig   gcd   lcm   莫比乌斯反演   ==   sigma   枚举   floor   

原文地址:http://www.cnblogs.com/SiriusRen/p/6702031.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!