标签:错排 身边 ota div sub mission 方法 turn printf
不容易系列之一
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20941 Accepted Submission(s): 8937
错排:
d[1]=0; d[2]=1;
d[n]=(n-1)*(d[n-1]+d[n-2])
注意用long long
代码:#include<stdio.h> int main() { int n; long long a[28]; a[1]=0;a[2]=1; for(int i=3;i<=20;i++) { a[i]=(i-1)*(a[i-1]+a[i-2]); } while(~scanf("%d",&n)) { printf("%lld\n",a[n]); } return 0; }
错排问题:
错排问题是组合数学中的问题之一。考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。 n个元素的错排数记为Dn。 研究一个排列错排个数的问题,叫做错排问题或称为更列问题。
最早研究错排问题的是尼古拉·伯努利和欧拉,因此历史上也称为伯努利-欧拉的装错信封的问题。这个问题有许多具体的版本,如在写信时将n封信装到n个不同的信封里,有多少种全部装错信封的情况?又比如四人各写一张贺年卡互相赠送,有多少种赠送方法?自己写的贺年卡不能送给自己,所以也是典型的错排问题。
==== 这里引用一下错排公式的推导方法。
方法一:
n各有序的元素应有n!种不同的排列。如若一个排列式的所有的元素都不在原来的位置上,则称这个排列为错排。任给一个n,求出1,2,……,n的错排个数Dn共有多少个。
递归关系式为:D(n)=(n-1)(D(n-1)+D(n-2))
D(1)=0,D(2)=1
可以得到:
错排公式为Dn=n!(1-1/2!+1/3!-.....+(-1)n/n!)
其中,n!=1*2*3*.....*n,
特别地,有0!=0,1!=1.
解释:
n 个不同元素的一个错排可由下述两个步骤完成:
第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。
第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若1号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:
1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置,于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。
根据乘法原理, n 个不同元素的错排种数
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。
证毕。
方法二:
n个人每个人都不站在原来的位置的方法数有:
f(n)=n!(1/2!-1/3!+1/4!+..+(-1)^n/n!)
此公式的推导过程要用到筛法公式,而且推导过程很复杂,除了竞赛高考肯定不会出现,对于n不大于4时可采用枚举法.一般只需记住n不大于5的情况即可
f(2)=1,f(3)=2,f(4)=9,f(5)=44
此外还有一个简单的公式f(n)={n!/e},{x}表示最接近x的整数,e为自然底数,其值为2.7182818.........,一般取2.72即可
====
我这里就是用的错排公式f(n) = (n-1)[f(n-2)+f(n-1)],同时注意会超int。
标签:错排 身边 ota div sub mission 方法 turn printf
原文地址:http://www.cnblogs.com/kimsimple/p/6708440.html