码迷,mamicode.com
首页 > 其他好文 > 详细

Large Scale Metric Learning from Equivalence Constraints (KISSME) CVPR 2012

时间:2017-04-14 16:26:27      阅读:801      评论:0      收藏:0      [点我收藏+]

标签:-o   put   log   strategy   row   scale   images   cti   win   

In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a large scale. Further, if one considers the constantly growing amount of data it is often infeasible to specify fully supervised labels for all data points. Instead, it is easier to specify labels in form of equivalence constraints. We introduce a simple though effective strategy to learn a distance metric from equivalence constraints, based on a statistical inference perspective. In contrast to
existing methods we do not rely on complex optimization problems requiring computationally expensive iterations. Hence, our method is orders of magnitudes faster than comparable methods. Results on a variety of challenging benchmarks with rather diverse nature demonstrate the power of our method. These include faces in unconstrained environments, matching before unseen object instances and person re-identification across spatially disjoint cameras. In the
latter two benchmarks we clearly outperform the state-ofthe-art.

KISS Metric Learning

技术分享

假设差向量分别服从0均值的高斯分布(同类和异类),则用最大似然估计协方差矩阵。

技术分享

技术分享

技术分享

 

Large Scale Metric Learning from Equivalence Constraints (KISSME) CVPR 2012

标签:-o   put   log   strategy   row   scale   images   cti   win   

原文地址:http://www.cnblogs.com/candyYang/p/6709262.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!