码迷,mamicode.com
首页 > 其他好文 > 详细

H.264的变换编码(一)——矩阵运算与正交变换基本概念

时间:2017-04-15 00:34:31      阅读:289      评论:0      收藏:0      [点我收藏+]

标签:nes   方法   适用于   net   协议   each   体会   公式   技术   

《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看!

“纸上得来终觉浅,绝知此事要躬行”,只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会!

链接地址:H.264/AVC视频编解码技术详解

GitHub代码地址:点击这里


1. 矩阵的定义

矩阵,英文称为”Matrix”,是数学中一个非常重要的概念。从形式上看,矩阵可以用一个m行n列的数组成的表格表示。如下图可表示一个4行4列的方形矩阵:

技术分享

在实际应用中,矩阵可以在多个技术领域发挥重要作用,如音视频压缩编码、机器学习、人工智能等领域。

技术分享

技术分享

2. 矩阵的运算

矩阵必须在计算中才能与其他数据进行交互。在《线性代数》中我们已经清楚地知道,矩阵可以进行求和、数乘和与矩阵相乘等运算。其中矩阵的求和与数乘运算十分简单:

  • 矩阵求和:同型矩阵可以求和,即将对应元素求和组成新的矩阵;
  • 矩阵数乘:任何矩阵都可与实数相乘,即将每个元素与该数字相乘组成新的矩阵;

而相比之下,矩阵与矩阵相乘会略显复杂,需要满足必要条件,即矩阵1的宽必须等于矩阵2的高方可相乘。乘积矩阵的高和宽分别为矩阵1的高和矩阵2的宽,如下图表示:
技术分享

其中,乘积矩阵的元素的计算方法为:
技术分享

通常,我们将只有一行或一列的矩阵称之为向量。根据排列的不同,按行或列排列的向量分别称之为行向量和列向量。

3. 向量和矩阵的线性变换

向量的线性变换定义为:向量y的每一个元素都是向量x中元素的线性组合,则y是x的线性变换。假设有向量[x1, x2, x3]和向量[y1, y2, y3],两个向量满足以下关系:

  • y1 = a11 * x1 + a12 * x2 + a13 * x3
  • y2 = a21 * x1 + a22 * x2 + a23 * x3
  • y3 = a31 * x1 + a32 * x2 + a33 * x3

那么我们称向量[y1, y2, y3]可以被向量[x1, x2, x3]线性表示,以公式形式则表示为y=A·x。其含义可表示为矩阵与向量相乘:

技术分享

矩阵A即为该线性变换的矩阵。

将向量的变换推广,矩阵可以视为由向量构成,因此线性线性变换同样适用于矩阵的变换:

技术分享

4. 向量的正交性、正交矩阵和正交变换

要了解向量的正交性,首先应了解向量的内积的概念。在“不严格”的条件下,我们暂且可以将向量的内积理解为数量积,即两个相同长度向量对应元素乘积的总和。用公式表示为:

技术分享

而向量的正交,等价于两个向量的内积为0。即:

技术分享

在二维和三维空间内直观地表示,两个正交向量相互垂直:
技术分享

由于矩阵可视为由多个列向量构成,那么多个两两正交的向量可以构成正交矩阵。一个矩阵是正交矩阵需要满足的条件有:

  • 行数和列数相等,即正交矩阵都为方阵;
  • 每一个列向量均为单位向量,即长度均为1;
  • 各列向量两两正交;

前面提到,每一个矩阵都可以与一个线性变换对应。那么如果一个线性变换对应的变换矩阵是正交矩阵,那么该变换就是一个正交变换。正交变换的显著特点之一是,向量经过正交变换后长度不会发生变化。


5. 离散余弦变换

离散余弦变换 (Discrete Cosine Transform, DCT)类似于一种实数类型的离散傅里叶变换(DFT),其定义有多种形式(可参考维基百科:离散余弦变换)。常用场合中使用的离散余弦变换是一个正交变换,其正变换和逆变换的计算方法如:

技术分享

技术分享

由于DCT具有类似于DFT的特性,DCT也可以实现如信息能量集中的功能。对于图像数据,DCT可以有效将大部分的能量集中与直流和低频部分,这也成为视频压缩中变换编码的理论基础之一。实际上,DCT长期应用与多种图像和视频的压缩编码标准中:

  • 视频:MPEG-1/MPEG-2;
  • 图像:JPEG

在H.264及更新的视频压缩标准中,采用的是DCT的优化改进版——整数变换。相对于浮点类型的离散余弦变换,整数变换有效降低了变换操作的运算复杂度,提升了编解码器的运行效率。

H.264的变换编码(一)——矩阵运算与正交变换基本概念

标签:nes   方法   适用于   net   协议   each   体会   公式   技术   

原文地址:http://blog.csdn.net/shaqoneal/article/details/70163157

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!