标签:next 方式 nod 删除 key 依次 链表 不同 comment
单链表中节点的查找、插入、删除、求单链表长度等操作。
在单链表中从第一个结点出发,顺指针next域逐个往下搜索,直到找到第i个结点为止,否则返回最后一个结点指针域NULL。
按序号查找结点值的算法如下:
按序号查找操作的时间复杂度为O(n)。
从单链表第一个结点开始,由前往后依次比较表中各结点数据域的值,若某结点数据域的值等于给定值e,则返回该结点的指针。若整个单链表中没有这样的结点,则返回NULL。按值查找结点的算法如下:
按值查找操作的时间复杂度为O(n)。
插入操作是将值为x的新结点插入到单链表的第i个位置上。先检查插入位置的合法性,然后找到待插入位置的前驱结点,即第i-1个结点,再在其后插入新结点。
算法首先调用上面的按序号查找算法GetElem(L, i-1),查找第i-1个结点。假设返回的第i-1个结点为*p,然后令新结,点*s的指针域指向*p的后继结点,再令结点*p的指针域指向新插入的结点*s。其操作过程如图2-6所示。
实现插入结点的代码片段如下:
算法中,语句②③的顺序不能颠倒,否则,当先执行p->next=s后,指向其原后继的指针就不存在了,再执行s->next = p->next时,相当于执行了 s->next=s,显然是错误的。本算法主要的时间开销在于查找第i-1个元素,时间复杂度为O(n)。若是在给定的结点后面插入新结点,则时间复杂度仅为O(1)。
扩展:对某一结点进行前插操作
前插操作是指在某结点的前面插入一个新结点,后插操作的定义刚好与之相反,在单链表插入算法中,通常都是釆用后插操作的。
以上面的算法为例,首先调用函数GetElem()找到第i-1个结点,即待插入结点的前驱结点后,再对其执行后插操作。由此可知,对结点的前插操作均可以转化为后插操作,前提是从单链表的头结点开始顺序查找到其前驱结点,时间复杂度为O(n)。
此外,可以釆用另一种方式将其转化为后插操作来实现,设待插入结点为*s,将插入到*p的前面。我们仍然将*s插入到*p的后面,然后将p->data与s->data交换即可,这样既满足了逻辑关系,又能使得时间复杂度为O(1)。算法的代码片段如下:
删除操作是将单链表的第i个结点删除。先检查删除位置的合法性,然后查找表中第i-1个结点,即被删结点的前驱结点,再将其删除。其操作过程如图2-7所示。
假设结点*p为找到的被删结点的前驱结点,为了实现这一操作后的逻辑关系的变化,仅需修改*p的指针域,即将*p的指针域next指向*q的下一结点。
实现删除结点的代码片段如下:
和插入算法一样,该算法的主要时间也是耗费在查找操作上,时间复杂度为O(n)。
扩展:删除结点*p
要实现删除某一个给定结点*p,通常的做法是先从链表的头结点开始顺序找到其前驱结点,然后再执行删除操作即可,算法的时间复杂度为O(n)。
其实,删除结点*p的操作可以用删除*p的后继结点操作来实现,实质就是将其后继结点的值赋予其自身,然后删除后继结点,也能使得时间复杂度为O(1)。
实现上述操作的代码片段如下:
求表长操作就是计算单链表中数据结点(不含头结点)的个数,需要从第一个结点开始顺序依次访问表中的每一个结点,为此需要设置一个计数器变量,每访问一个结点,计数器加1,直到访问到空结点为止。算法的时间复杂度为O(n)。
需要注意的是,因为单链表的长度是不包括头结点的,因此,不带头结点和带头结点的单链表在求表长操作上会略有不同。对不带头结点的单链表,当表为空时,要单独处理。
标签:next 方式 nod 删除 key 依次 链表 不同 comment
原文地址:http://www.cnblogs.com/chenchenwang/p/6746081.html