码迷,mamicode.com
首页 > 其他好文 > 详细

Classes as objects

时间:2017-04-23 18:53:03      阅读:154      评论:0      收藏:0      [点我收藏+]

标签:实现   属性   字典   http   ntc   工厂   tle   intro   als   

Before understanding metaclasses, you need to master classes in Python. And Python has a very peculiar idea of what classes are, borrowed from the Smalltalk language.

在理解元类之前,你先要掌握Python的类。Python中的类是借鉴了小众语言的特殊的类。

In most languages, classes are just pieces of code that describe how to produce an object. That‘s kinda true in Python too:

在多数语言中,类也只不过是用来描述创建对象的代码段,也适用于Python:

>>> class ObjectCreator(object):
    pass

>>> my_object = ObjectCreator()
>>> print(my_object)
<__main__.ObjectCreator object at 0x000000000357E748>
>>>

But classes are more than that in Python. Classes are objects too.

但是Python中的类不仅仅具有创建对象这一特性,Python中的类还是对象。

Yes, objects.

是的,对象!

As soon as you use the keyword class, Python executes it and creates an OBJECT. The instruction creates in memory an object with the name "ObjectCreator".

当你使用关键字class时,Python会执行class并创建一个对象。代码在内存中创建一个名为‘ObjectCreator‘的对象。

This object (the class) is itself capable of creating objects (the instances), and this is why it‘s a class.

这一对象(类)自身具备创建对象(实例对象)的能力,这就是其被称为类的原因。

But still, it‘s an object, and therefore:   (由于类是对象,因此有以下的特性)

  • you can assign it to a variable                  (赋值给变量)
  • you can copy it                                       (复制)
  • you can add attributes to it                      (添加属性)
  • you can pass it as a function parameter     (作为函数的参数进行传递)

e.g.:

>>> print(ObjectCreator)    # you can print a class because its an object
<class __main__.ObjectCreator>
>>> def echo(o):
    print(o)

    
>>> echo(ObjectCreator)      # you can pass a class as a parameter
<class __main__.ObjectCreator>
>>> print(hasattr(ObjectCreator, new_attribute))
False
>>> ObjectCreator.new_attribute = foo  # you can add attributes to a class
>>> print(hasattr(ObjectCreator, new_attribute))
True
>>> ObjectCreatorMirror = ObjectCreator  # you can assign a class to a variable
>>> print(ObjectCreatorMirror.new_attribute)
foo
>>> print(ObjectCreatorMirror())
<__main__.ObjectCreator object at 0x000000000357E860>
>>> 

1、Creating classes dynamically   (动态地创建类)

Since classes are objects, you can create them on the fly, like any object.

因为类是对象,所以你可向其他对象一样自由地创建类

First, you can create a class in a function using class:

首先,可以在函数中用关键字class创建类:

def choose_class(name):
    if name == foo:
        class Foo(object):
            pass
        return Foo       # return the class, not an instance
    else:
        class Bar(object):
            pass
        return Bar


>>> MyClass = choose_class(foo)
>>> print(MyClass)  # the function returns a class, not an instance
<class __main__.choose_class.<locals>.Foo>
>>> print(MyClass())  # you can create an object from this class
<__main__.choose_class.<locals>.Foo object at 0x000000000357EDD8>
>>> 

But it‘s not so dynamic, since you still have to write the whole class yourself.

但是以上实例并非动态创建,因为你仍需要手动创建整个类。

Since classes are objects, they must be generated by something.

由于类即对象,对象必须由其他生成。

When you use the class keyword, Python creates this object automatically. But as with most things in Python, it gives you a way to do it manually.

当你你使用关键字class时,Python自动创建对象。但是在Python中,大部分是手动创建的。

Remember the function type? The good old function that lets you know what type an object is:

还记得函数type吗?这一经典的函数以下的演示,可以让你对其有一定的理解:

>>> print(type(1))
<type int>
>>> print(type(1))
<type str>
>>> print(type(ObjectCreator))
<type type>
>>> print(type(ObjectCreator()))
<class __main__.ObjectCreator>

Well, type has a completely different ability, it can also create classes on the fly. type can take the description of a class as parameters, and return a class.

type有独特的能力,可以自由地创建类,可以对类的描述作为参数并返回一个类。

(I know, it‘s silly that the same function can have two completely different uses according to the parameters you pass to it. It‘s an issue due to backwards compatibility in Python)

type works this way:

type(name of the class, 
     tuple of the parent class (for inheritance, can be empty), 
     dictionary containing attributes names and values)

e.g.:

>>> class MyShinyClass(object):
...       pass

can be created manually this way:

>>> MyShinyClass = type(‘MyShinyClass‘, (), {})  # return a class object
>>> print(MyShinyClass)
<class ‘__main__.MyShinyClass‘>
>>> print(MyShinyClass())    # create an instance with the class
<__main__.MyShinyClass object at 0x000000000352ED30>
>>> 

You‘ll notice that we use "MyShinyClass" as the name of the class and as the variable to hold the class reference. They can be different, but there is no reason to complicate things.

你可能已经发现,我们将"MyShinyClass"既当成类名,又将其当成变量作为该类的引用。其实是可以用其他变量作为引用的,但是将事情搞得复杂化就罪过了。

type accepts a dictionary to define the attributes of the class. So:

type可接受一个字典用来定义类属性:

>>> class Foo(object):
...       bar = True

 Can be translated to:  (可以转义为)

Foo = type(‘Foo‘, (), {‘bar‘:True})

And used as a normal class:

>>> Foo = type(‘Foo‘, (object, ), {‘bar‘:True})
>>> print(Foo)
<class ‘__main__.Foo‘>
>>> print(Foo.bar)
True
>>> f = Foo()
>>> print(f)
<__main__.Foo object at 0x000000000352EE80>
>>> print(f.bar)
True
>>> 

And of course, you can inherit from it, so:

>>>   class FooChild(Foo):
...       pass

would be:

>>> FooChild = type(‘FooChild‘, (Foo,), {})
>>> print(FooChild)
<class ‘__main__.FooChild‘>
>>> print(FooChild.bar) # bar is inherited from Foo
True

Eventually you‘ll want to add methods to your class. Just define a function with the proper signature and assign it as an attribute.

有时可能给类添加方法——只需要一个包含特定处理逻辑的函数并将该函数作为一个属性赋值给类即可。

>>> def echo_bar(self):
	print(self.bar)

	
>>> FooChild = type(‘FooChild‘, (Foo, ), {‘echo_bar‘: echo_bar})
>>> hasattr(Foo, ‘echo_bar‘)
False
>>> hasattr(FooChild, ‘echo_bar‘)
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True
>>> 

And you can add even more methods after you dynamically create the class, just like adding methods to a normally created class object.

当动态地创建类之后,你可添加多个方法给该类,就像你给已创建的类对象添加方法一样。

>>> def echo_bar_more(self):
	print(‘yet another method‘)

	
>>> FooChild.echo_bar_more = echo_bar_more
>>> hasattr(FooChild, ‘echo_bar_more‘)
True
>>> 

You see where we are going: in Python, classes are objects, and you can create a class on the fly, dynamically.

This is what Python does when you use the keyword class, and it does so by using a metaclass.

由此可见,在Python中,类即对象,你可以动态地,自由地创建类对象。

当你用关键字创建类时,(后台)Python的创建模式采用type的方式,同样使用元类metaclass也是同一原理。

 

2. What are metaclasses (finally)

Metaclasses are the ‘stuff‘ that creates classes.

元类是创建类的员工。

You define classes in order to create objects, right?

为了创建对象,你得先定义类,对吧?

But we learned that Python classes are objects.

但是Python的类都是对象。(那类又是谁创建的?该不会是石头缝里蹦出来的吧?)

Well, metaclasses are what create these objects. They are the classes‘ classes, you can picture them this way:

元类就是创建这些类(对象)的东东。元类是类的类,可以用以下的方式加以阐述:

MyClass = MetaClass()
MyObject = MyClass()

You‘ve seen that type lets you do something like this:

MyClass = type(‘MyClass‘, (), {})

It‘s because the function type is in fact a metaclass. type is the metaclass Python uses to create all classes behind the scenes.

实际上函数type就是一个元类。type在后台创建所有的类。

Now you wonder why the heck is it written in lowercase, and not Type?

可能你会犯嘀咕——这鬼东西(type)为啥要小写,不可以是Type吗?

Well, I guess it‘s a matter of consistency with str, the class that creates strings objects, and int the class that creates integer objects. type is just the class that creates class objects.

我猜测是为了与str,int等保持一致;因为str()创建的是字符串对象,int()创建的是整型对象,type也不过是创建类对象的类罢了。

You see that by checking the __class__ attribute.

你可以查看一下类中的__class__属性(就知道)。

Everything, and I mean everything, is an object in Python. That includes ints, strings, functions and classes. All of them are objects. And all of them have been created from a class:

在Python中一切皆对象。包括ints,strings,functions及classes它们都是对象。它们都是由一个类创建出来的:

>>> age = 35
>>> age.__class__
<type ‘int‘>
>>> name = ‘bob‘
>>> name.__class__
<type ‘str‘>
>>> def foo():pass
... 
>>> foo.__class__
<type ‘function‘>
>>> class Bar(object):pass
... 
>>> b = Bar()
>>> b.__class__
<class ‘__main__.Bar‘>
>>> 

Now, what is the __class__ of any __class__ ?

>>> age.__class__.__class__
<type ‘type‘>
>>> name.__class__.__class__
<type ‘type‘>
>>> foo.__class__.__class__
<type ‘type‘>
>>> b.__class__.__class__
<type ‘type‘>
>>> 

So, a metaclass is just the stuff that creates class objects.

因此,元类是创建类对象的员工

You can call it a ‘class factory‘ if you wish.

如果你愿意,可以称其为工厂方法

type is the built-in metaclass Python uses, but of course, you can create your own metaclass.

type是Python中内置的元类,当然,你可以创建自定义元类。

3. The __metaclass__ attribute

You can add a __metaclass__ attribute when you write a class:

创建类时,你可以添加__metaclass__属性:

class Foo(object):
  __metaclass__ = something...
  [...]

If you do so, Python will use the metaclass to create the class Foo.

如果你这么干了,Python会借助这个元类创建类Foo。

Careful, it‘s tricky.

注意,这是一个小花招。

You write class Foo(object) first, but the class object Foo is not created in memory yet.

你的确编码了class Foo(object),但是此时类对象Foo在内存中并未创建。

Python will look for __metaclass__ in the class definition. If it finds it, it will use it to create the object class Foo. If it doesn‘t, it will use type to create the class.

Python会自动搜寻类中定义的__metaclass__;如果存在,Python即可创建类对象Foo;如果不存在,Python会用type创建该类。

Read that several times.

When you do:

class Foo(Bar):
  pass

Python does the following:  (Python依次干了以下事情)

Is there a __metaclass__ attribute in Foo?

类Foo中有__metaclass__属性吗?

If yes, create in memory a class object (I said a class object, stay with me here), with the name Foo by using what is in __metaclass__.

有,使用Foo中的__metaclass__在内存中创建类对象。

If Python can‘t find __metaclass__, it will look for a __metaclass__ at the MODULE level, and try to do the same (but only for classes that don‘t inherit anything, basically old-style classes).

没有,Python会在模块级别搜寻__metaclass__,重复以上操作(但仅限于经典类,并且未继承任何类)。

Then if it can‘t find any __metaclass__ at all, it will use the Bar‘s (the first parent) own metaclass (which might be the default type) to create the class object.

如果还是没找到,Python会使用父类Bar中的元类(可能是默认的type)创建类对象。

Be careful here that the __metaclass__ attribute will not be inherited, the metaclass of the parent (Bar.__class__) will be. If Bar used a __metaclass__ attribute that created Bar with type() (and not type.__new__()), the subclasses will not inherit that behavior.

注意:__metaclass__属性是不能被继承的,父类的元类(Bar.__class__)会(用于创建子类对象)。如果Bar由type()创建(非type.__new__()创建),此时子类使用父类Bar中的__metaclass__属性,子类不会继承这一属性。

Now the big question is, what can you put in __metaclass__ ?

这就有个疑问,你能在__metaclass__中设置什么?

The answer is: something that can create a class.

答案是:可以创建类的东东。

And what can create a class? type, or anything that subclasses or uses it.

什么可以创建类?type或是其他。

 

4. Custom metaclasses(自定义元类)

The main purpose of a metaclass is to change the class automatically, when it‘s created.

自定义元类的主要目的是,当类创建时,自动改变类。

You usually do this for APIs, where you want to create classes matching the current context.

常用于这样一些API接口——创建符合当前上下文的类。

Imagine a stupid example, where you decide that all classes in your module should have their attributes written in uppercase. There are several ways to do this, but one way is to set __metaclass__ at the module level.

试想一个菜的例子:在你定义的模块中,所有的类的属性需大写。有多种方式做到,其中一个办法便是:设置__metaclass__为模块级别的属性。

This way, all classes of this module will be created using this metaclass, and we just have to tell the metaclass to turn all attributes to uppercase.

这种情况下,该模块下的所有的类创建时均使用这个元类,我们需要做的只是告知元类将所有的类属性全部大写。

Luckily, __metaclass__ can actually be any callable, it doesn‘t need to be a formal class (I know, something with ‘class‘ in its name doesn‘t need to be a class, go figure... but it‘s helpful).

还好,__metaclass__可以实现多种类型的调用,并不需要和普通类一样的调用。

So we will start with a simple example, by using a function.

接下来我们用函数的形式展示这个简单的例子:

# -*- coding:utf-8 -*-
# Author: antcolonies

# the metaclass will automatically get passed the same argument
# that you usually pass to `type`

def upper_attr(future_class_name, future_class_parents, future_class_attr):
    ‘‘‘
    Return a class object, with the list of its attribute
    turned into uppercase
    ‘‘‘
    # pick up any attribute that doesn‘t start with ‘__‘ and uppercase it
    uppercase_attr = {}
    for name, val in future_class_attr.items():
        if not name.startswith(‘__‘):
            uppercase_attr[name.upper()] = val
        else:
            uppercase_attr[name] = val

    # let `type` do the class creation
    return type(future_class_name, future_class_parents, uppercase_attr)

__metaclass__ = upper_attr # this will affect all classes in the module

class Foo:
    ‘‘‘
    global __metaclass__ won‘t work with ‘object‘ though
    but we can define __metaclass__ here instead to affect
    only this class and this will work with ‘object‘ children
    ‘‘‘
    bar = ‘bip‘

print(hasattr(Foo, ‘bar‘))
# output
False
print(hasattr(Foo, ‘BAR‘))
# output
True

f = Foo()
print(f.BAR)
# output
bip

Now, let‘s do exactly the same, but using a real class for a metaclass:

#-*- coding:utf-8 -*-
#

# remember that `type` is actually a class like `str` and
# `int`, so you can inherit from it

class UpperAttrMetaclass(type):
    ‘‘‘ 
    __new__ is the method called before __init__
    it‘s the method that creats the object and reurns it
    while __init__ just initializes the object passed as parameter
    you rarely use __new__, except when you want to control how the object is created
    here the created object is the class, and we want to customize it
    so we override __new__
    you can do some stuff in __init__ as well, but we won‘t see this
    ‘‘‘
    def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attr):
        uppercase_attr = {}
        for name, val in future_class_attr.items():
            if not name.startswith(‘__‘):
                uppercase_attr[name.upper()] = val 
            else:
                uppercase_attr[name] = val 
        return type(future_class_name, future_class_parents, uppercase_attr)

But this is not really OOP. We call type directly and we don‘t override or call the parent __new__. Let‘s do it:

#-*- coding:utf-8 -*-
#

# remember that `type` is actually a class like `str` and
# `int`, so you can inherit from it

class UpperAttrMetaclass(type):
    def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attr):
        uppercase_attr = {}
        for name, val in future_class_attr.items():
            if not name.startswith(‘__‘):
                uppercase_attr[name.upper()] = val 
            else:
                uppercase_attr[name] = val 
    
        # reuse the type.__new__ method
        # this is basic OPP, nothing magic in there
        return type.__new__(upperattr_metaclass,future_class_name, future_class_parents, uppercase_attr)

You may have noticed the extra argument upperattr_metaclass. There is nothing special about it: __new__ always receives the class it‘s defined in, as first parameter. Just like you have self for ordinary methods which receive the instance as first parameter, or the defining class for class methods.

Of course, the names I used here are long for the sake of clarity, but like for self, all the arguments have conventional names. So a real production metaclass would look like this:

#-*- coding:utf-8 -*-
#

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, dct):
        uppercase_attr = {}
        for name, val in dct.items():
            if not name.startswith(‘__‘):
                uppercase_attr[name.upper()] = val
            else:
                uppercase_attr[name] = val
        
        # reuse the type.__new__ method
        # this is basic OPP, nothing magic in there
        return type.__new__(cls,clsname, bases, uppercase_attr)

We can make it even cleaner by using super, which will ease inheritance (because yes, you can have metaclasses, inheriting from metaclasses, inheriting from type):

#-*- coding:utf-8 -*-
#

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, dct):
        uppercase_attr = {}
        for name, val in dct.items():
            if not name.startswith(‘__‘):
                uppercase_attr[name.upper()] = val
            else:
                uppercase_attr[name] = val

        return super(UpperAttrMetaclass, cls).__new__(clsname, bases, uppercase_attr)

That‘s it. There is really nothing more about metaclasses.

The reason behind the complexity of the code using metaclasses is not because of metaclasses, it‘s because you usually use metaclasses to do twisted stuff relying on introspection, manipulating inheritance, vars such as __dict__, etc.

Indeed, metaclasses are especially useful to do black magic, and therefore complicated stuff. But by themselves, they are simple:

  • intercept a class creation    (捕获创建的类)
  • modify the class                 (修改类)
  • return the modified class     (返回修改的类)

5. Why would you use metaclasses classes instead of functions?

Since __metaclass__ can accept any callable, why would you use a class since it‘s obviously more complicated?

There are several reasons to do so:

  • The intention is clear. When you read UpperAttrMetaclass(type), you know what‘s going to follow
  • You can use OOP. Metaclass can inherit from metaclass, override parent methods. Metaclasses can even use metaclasses.
  • You can structure your code better. You never use metaclasses for something as trivial as the above example. It‘s usually for something complicated. Having the ability to make several methods and group them in one class is very useful to make the code easier to read.
  • You can hook on __new__, __init__ and __call__. Which will allow you to do different stuff. Even if usually you can do it all in __new__, some people are just more comfortable using __init__.
  • These are called metaclasses, damn it! It must mean something!

6. Why would you use metaclasses?

Now the big question. Why would you use some obscure error prone feature?

有一个疑问——为何使用罕见又有错误倾向的特性?

Well, usually you don‘t:

Metaclasses are deeper magic that 99% of users should never worry about. If you wonder whether you need them, you don‘t (the people who actually need them know with certainty that they need them, and don‘t need an explanation about why).

Python Guru Tim Peters

The main use case for a metaclass is creating an API. A typical example of this is the Django ORM.

It allows you to define something like this:

class Person(models.Model):
    name = models.CharField(max_length=30)
    age = models.IntegerField()

But if you do this:

guy = Person(name=‘bob‘, age=‘35‘)
print(guy.age)

It won‘t return an IntegerField object. It will return an int, and can even take it directly from the database.

This is possible because models.Model defines __metaclass__ and it uses some magic that will turn the Person you just defined with simple statements into a complex hook to a database field.

Django makes something complex look simple by exposing a simple API and using metaclasses, recreating code from this API to do the real job behind the scenes.

6. The last word

First, you know that classes are objects that can create instances.

Well in fact, classes are themselves instances. Of metaclasses.

>>> class Foo(object): pass
>>> id(Foo)
142630324

Everything is an object in Python, and they are all either instances of classes or instances of metaclasses.

Except for type.

type is actually its own metaclass. This is not something you could reproduce in pure Python, and is done by cheating a little bit at the implementation level.

Secondly, metaclasses are complicated. You may not want to use them for very simple class alterations. You can change classes by using two different techniques:

99% of the time you need class alteration, you are better off using these.

But 99% of the time, you don‘t need class alteration at all.

 

引用自:http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python

Classes as objects

标签:实现   属性   字典   http   ntc   工厂   tle   intro   als   

原文地址:http://www.cnblogs.com/ant-colonies/p/6748064.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!