标签:系统 blank bad 方式 上进 tps 可视化 营销 授权
所谓“埋点”,是数据采集领域(尤其是用户行为数据采集领域)的术语,指的是针对特定用户行为或事件进行捕获、处理和发送的相关技术及其实施过程。
埋点的技术实质,是先监听软件应用运行过程中的事件,当需要关注的事件发生时进行判断和捕获,然后获取必要的上下文信息,最后将信息整理后发送至服务器端。所监听的事件,通常由操作系统、浏览器、APP框架等平台提供,也可以在基础事件之上进行触发条件的自定义(如点击某一个特定按钮)。一般情况下,埋点可以通过监测分析工具提供的SDK来进行编程实现。
埋点的业务意义显而易见,即帮助定义和获取分析人员真正需要的业务数据及其附带信息。在不同场景下,业务人员关注的信息和角度可能不同。典型的应用场景有面向数字营销领域的分析,以及面向产品运营领域的分析。前者注重来源渠道和广告效果,后者更在意产品本身流程和体验的优化。两者各有侧重,也可以有一些交叉。所以,对于不同的项目和分析目的,应当设计不同的埋点方案。
近年来,埋点的方法论上也出现了一些业界新趋势,如“无埋点”技术。所谓“无埋点”,是指不再使用笨拙的采集代码编程来定义行为采集的触发条件和后续行为,而是通过后端配置或前端可视化圈选等方式来完成关键事件的定义和捕获,可以大幅提升埋点工作的效率和易用性。在“无埋点”的场景下,数据监测工具一般倾向于在监测时捕获和发送尽可能多的事件和信息,而在数据处理后端进行触发条件匹配和统计计算等工作,以较好地支持关注点变更和历史数据回溯。当然,即便是“无埋点”技术,也仍然需要部署数据采集基础SDK(又称基础代码),这一点需要注意,容易产生误区。
如果需要了解更多关于埋点的详细信息,可以阅读宋星的文章:
http://www.chinawebanalytics.cn/auto-event-tracking-good-bad-ugly/
By 何恺铎
标签:系统 blank bad 方式 上进 tps 可视化 营销 授权
原文地址:http://www.cnblogs.com/zhuzigege/p/6756427.html