标签:getattr 标识 讲解 调用 windows系统 默认值 io多路复用 工厂 figure
本文所剖析的tornado源码版本为4.4.2
ioloop就是对I/O多路复用的封装,它实现了一个单例,将这个单例保存在IOLoop._instance中
ioloop实现了Reactor模型,将所有要处理的I/O事件注册到一个中心I/O多路复用器上,同时主线程/进程阻塞在多路复用器上;一旦有I/O事件到来或是准备就绪(文件描述符或socket可读、写),多路复用器返回并将事先注册的相应I/O事件分发到对应的处理器中。
另外,ioloop还被用来集中运行回调函数以及集中处理定时任务。
1 首先我们要了解Reactor模型
2 其次,我们要了解I/O多路复用,由于本文假设系统为Linux,所以要了解epoll以及Python中的select模块
3 IOLoop类是Configurable类的子类,而Configurable类是一个工厂类,讲解在这。
来看IOLoop,它的父类是Configurable类,也就是说:IOLoop是一个直属配置子类
class IOLoop(Configurable): ......
这里就要结合Configurable类进行讲解:
def __new__(cls, *args, **kwargs) ‘‘‘ 解析出impl对象 1 cls是直属配置子类时,impl就是该直属配置子类的‘执行类对象‘ 2 cls是从属配置子类时,impl就是该从属配置子类自身 然后实例化一个impl实例对象 运行其initialize方法,并传入合并后的参数 返回该impl实例对象 ‘‘‘ base = cls.configurable_base() init_kwargs = {} if cls is base: impl = cls.configured_class() if base.__impl_kwargs: init_kwargs.update(base.__impl_kwargs) else: impl = cls init_kwargs.update(kwargs) instance = super(Configurable, cls).__new__(impl) instance.initialize(*args, **init_kwargs) return instance
1 首先实例化一个该直属配置子类的‘执行类对象‘,也就是调用该类的configurable_default方法并返回赋值给impl:
@classmethod def configurable_default(cls): if hasattr(select, "epoll"): # 因为我们假设我们的系统为Linux,且支持epoll,所以这里为True from tornado.platform.epoll import EPollIOLoop return EPollIOLoop if hasattr(select, "kqueue"): # Python 2.6+ on BSD or Mac from tornado.platform.kqueue import KQueueIOLoop return KQueueIOLoop from tornado.platform.select import SelectIOLoop return SelectIOLoop
2 也就是impl是EPollIOLoop类对象,然后实例化该对象,运行其initialize方法
class EPollIOLoop(PollIOLoop): # 该类只有这么短短的几句,可见主要的方法是在其父类PollIOLoop中实现。 def initialize(self, **kwargs): super(EPollIOLoop, self).initialize(impl=select.epoll(), **kwargs) # 执行了父类PollIOLoop的initialize方法,并将select.epoll()传入
来看一看PollIOLoop.initialize(EPollIOLoop(),impl=select.epoll())干了些啥:
class PollIOLoop(IOLoop): # 从属配置子类 def initialize(self, impl, time_func=None, **kwargs): super(PollIOLoop, self).initialize(**kwargs) # 调用IOLoop的initialize方法 self._impl = impl # self._impl = select.epoll() if hasattr(self._impl, ‘fileno‘): # 文件描述符的close_on_exec属性 set_close_exec(self._impl.fileno()) self.time_func = time_func or time.time self._handlers = {} # 文件描述符对应的fileno()作为key,(文件描述符对象,处理函数)作为value self._events = {} # 用来存储epoll_obj.poll()返回的事件,也就是哪个fd发生了什么事件{(fd1, event1), (fd2, event2)……} self._callbacks = [] self._callback_lock = threading.Lock() # 添加线程锁 self._timeouts = [] # 存储定时任务 self._cancellations = 0 self._running = False self._stopped = False self._closing = False self._thread_ident = None # 获得当前线程标识符 self._blocking_signal_threshold = None self._timeout_counter = itertools.count() # Create a pipe that we send bogus data to when we want to wake # the I/O loop when it is idle self._waker = Waker() self.add_handler(self._waker.fileno(), lambda fd, events: self._waker.consume(), self.READ)
首先调用了IOLoop.initialize(self,**kwargs)方法:
def initialize(self, make_current=None): if make_current is None: if IOLoop.current(instance=False) is None: self.make_current() elif make_current: if IOLoop.current(instance=False) is not None: raise RuntimeError("current IOLoop already exists") self.make_current()
@staticmethod def current(instance=True): current = getattr(IOLoop._current, "instance", None) if current is None and instance: return IOLoop.instance() return current def make_current(self): IOLoop._current.instance = self
我们可以看到IOLoop.initialize()主要是对线程做了一些支持和操作。
3 返回该实例
1 处理I/O事件以及其对应handler的相关属性以及方法
使用self._handlers用来存储,文件描述符对应的fileno()作为key,元组(文件描述符对象,处理函数)作为value
add_handler方法用来添加
update_handle方法用来更新
remove_handler方法用来移除
def add_handler(self, fd, handler, events): # 向epoll中注册事件 , 并在self._handlers[fd]中为该文件描述符添加相应处理函数 fd, obj = self.split_fd(fd) # fd.fileno(),fd self._handlers[fd] = (obj, stack_context.wrap(handler)) self._impl.register(fd, events | self.ERROR) def update_handler(self, fd, events): fd, obj = self.split_fd(fd) self._impl.modify(fd, events | self.ERROR) def remove_handler(self, fd): fd, obj = self.split_fd(fd) self._handlers.pop(fd, None) self._events.pop(fd, None) try: self._impl.unregister(fd) except Exception: gen_log.debug("Error deleting fd from IOLoop", exc_info=True)
2 处理回调函数的相关属性以及方法
self._callbacks用来存储回调函数
add_callback方法用来直接添加回调函数
add_future方法用来间接的添加回调函数,future对象详解在这
def add_callback(self, callback, *args, **kwargs): # 因为Python的GIL的限制,导致Python线程并不算高效。加上tornado实现了多进程 + 协程的模式,所以我们略过源码中的部分线程相关的一些操作 if self._closing: return self._callbacks.append(functools.partial(stack_context.wrap(callback), *args, **kwargs)) def add_future(self, future, callback): # 为future对象添加经过包装后的回调函数,该回调函数会在future对象被set_done后添加至_callbacks中 assert is_future(future) callback = stack_context.wrap(callback) future.add_done_callback( lambda future: self.add_callback(callback, future))
3 处理定时任务的相关属性以及方法
self._timeouts用来存储定时任务
self.add_timeout用来添加定时任务(self.call_later self.call_at都是间接调用了该方法)
def add_timeout(self, deadline, callback, *args, **kwargs): """ ``deadline``可能是一个数字,表示相对于当前时间的时间(与“IOLoop.time”通常为“time.time”相同的大小),或者是datetime.timedelta对象。 自从Tornado 4.0以来,`call_later`是一个比较方便的替代方案,因为它不需要timedelta对象。 """ if isinstance(deadline, numbers.Real): return self.call_at(deadline, callback, *args, **kwargs) elif isinstance(deadline, datetime.timedelta): return self.call_at(self.time() + timedelta_to_seconds(deadline), callback, *args, **kwargs) else: raise TypeError("Unsupported deadline %r" % deadline)
4 启动io多路复用器
启动也一般就意味着开始循环,那么循环什么呢?
1 运行回调函数
2 运行时间已到的定时任务
3 当某个文件描述法发生事件时,运行该事件对应的handler
def start(self): if self._running: raise RuntimeError("IOLoop is already running") self._setup_logging() if self._stopped: self._stopped = False return old_current = getattr(IOLoop._current, "instance", None) IOLoop._current.instance = self self._thread_ident = thread.get_ident() # 获得当前线程标识符 self._running = True old_wakeup_fd = None if hasattr(signal, ‘set_wakeup_fd‘) and os.name == ‘posix‘: # 需要Python2.6及以上版本,类UNIX系统,set_wake_up_fd存在。在windows系统上运行会崩溃 try: old_wakeup_fd = signal.set_wakeup_fd(self._waker.write_fileno()) if old_wakeup_fd != -1: # Already set, restore previous value. This is a little racy, # but there‘s no clean get_wakeup_fd and in real use the # IOLoop is just started once at the beginning. signal.set_wakeup_fd(old_wakeup_fd) old_wakeup_fd = None except ValueError: # Non-main thread, or the previous value of wakeup_fd # is no longer valid. old_wakeup_fd = None try: while True: # 防止多线程模型时产生脏数据 with self._callback_lock: callbacks = self._callbacks self._callbacks = [] due_timeouts = [] if self._timeouts: # 将时间已到的定时任务放置到due_timeouts中 now = self.time() while self._timeouts: if self._timeouts[0].callback is None: heapq.heappop(self._timeouts) self._cancellations -= 1 elif self._timeouts[0].deadline <= now: due_timeouts.append(heapq.heappop(self._timeouts)) else: break if (self._cancellations > 512 and self._cancellations > (len(self._timeouts) >> 1)): self._cancellations = 0 self._timeouts = [x for x in self._timeouts if x.callback is not None] heapq.heapify(self._timeouts) for callback in callbacks: # 执行callbacks self._run_callback(callback) for timeout in due_timeouts: # 执行timeout_callback if timeout.callback is not None: self._run_callback(timeout.callback) # 释放内存 callbacks = callback = due_timeouts = timeout = None if self._callbacks: # 如果在执行callbacks 或者 timeouts的过程中,他们执行了add_callbacks ,那么这时:self._callbacks就非空了, # 为了尽快的执行其中的callbacks,我们需要将poll_timeout 设置为0,这样我们就不需要等待fd事件发生,尽快运行callbacks了 poll_timeout = 0.0 elif self._timeouts: # If there are any timeouts, schedule the first one. # Use self.time() instead of ‘now‘ to account for time # spent running callbacks. poll_timeout = self._timeouts[0].deadline - self.time() poll_timeout = max(0, min(poll_timeout, _POLL_TIMEOUT)) else: # 如果没有回调函数也没有定时任务,我们就使用默认值 poll_timeout = _POLL_TIMEOUT if not self._running: # 终止ioloop运行时,在执行完了callback后结束循环 break if self._blocking_signal_threshold is not None: # clear alarm so it doesn‘t fire while poll is waiting for # events. signal.setitimer(signal.ITIMER_REAL, 0, 0) try: event_pairs = self._impl.poll(poll_timeout) except Exception as e: # http://blog.csdn.net/benkaoya/article/details/17262053 解释EINTR是什么。系统调用被信号处理函数中断,进行下一次循环 if errno_from_exception(e) == errno.EINTR: continue else: raise if self._blocking_signal_threshold is not None: signal.setitimer(signal.ITIMER_REAL, self._blocking_signal_threshold, 0) # 从一组待处理的fds中一次弹出一个fd并运行其处理程序。 # 由于该处理程序可能会对其他文件描述符执行操作,因此可能会重新调用此IOLoop来修改self._events self._events.update(event_pairs) while self._events: fd, events = self._events.popitem() # 获取一个fd以及对应事件 try: fd_obj, handler_func = self._handlers[fd] # 获取该fd对应的事件处理函数 handler_func(fd_obj, events) # 运行该事件处理函数 except (OSError, IOError) as e: if errno_from_exception(e) == errno.EPIPE: # 当客户端关闭连接时会产生EPIPE错误 pass else: self.handle_callback_exception(self._handlers.get(fd)) except Exception: self.handle_callback_exception(self._handlers.get(fd)) # 释放内存空间 fd_obj = handler_func = None finally: # reset the stopped flag so another start/stop pair can be issued self._stopped = False if self._blocking_signal_threshold is not None: signal.setitimer(signal.ITIMER_REAL, 0, 0) IOLoop._current.instance = old_current if old_wakeup_fd is not None: signal.set_wakeup_fd(old_wakeup_fd)
5 关闭io多路复用器
def close(self, all_fds=False): with self._callback_lock: self._closing = True self.remove_handler(self._waker.fileno()) if all_fds: # 该参数若为True,则表示会关闭所有文件描述符 for fd, handler in self._handlers.values(): self.close_fd(fd) self._waker.close() self._impl.close() self._callbacks = None self._timeouts = None
标签:getattr 标识 讲解 调用 windows系统 默认值 io多路复用 工厂 figure
原文地址:http://www.cnblogs.com/MnCu8261/p/6730691.html