码迷,mamicode.com
首页 > 其他好文 > 详细

NYOJ--517--最小公倍数(大数打表)

时间:2017-04-27 17:49:45      阅读:244      评论:0      收藏:0      [点我收藏+]

标签:内存   integer   style   ima   nal   tip   problem   can   public   

最小公倍数

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述
为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致。
但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多。
事实上,它是1至6的每个数字的倍数。即1,2,3,4,5,6都是可以除尽60。
 
我们希望寻找到能除尽1至n的的每个数字的最小整数m.
 
输入
多组测试数据(少于500组)。
每行只有一个数n(1<=n<=100).
输出
输出相应的m。
样例输入
2
3
4
样例输出
2
6
12
  1 //打表
  2 import java.math.BigDecimal;
  3 import java.math.BigInteger;
  4 import java.util.Scanner;
  5 public class Main{
  6     
  7     public static void main(String args[]){
  8         Scanner cin = new Scanner(System.in);
  9         /*final int MAX = 105;
 10         int arr[] = new int[MAX];
 11         BigInteger res[] = new BigInteger[MAX];
 12         for(int i=1; i<MAX; ++i)arr[i] = i;
 13         for(int i=2; i<MAX; ++i){
 14             for(int j=i+1; j<MAX; ++j){
 15                 if(j%i == 0)
 16                     arr[j] /= arr[i];
 17             }
 18         }
 19         for(int i=1; i<MAX; ++i)res[i] = BigInteger.ONE;
 20         for(int i=2; i<MAX; ++i){
 21             for(int j=2; j<i; ++j){
 22                 res[i] = res[i].multiply(BigInteger.valueOf(arr[j]));
 23             }
 24         }
 25         for(int i=1; i<101; ++i){
 26             int n = i;
 27             System.out.println("\""+res[n+1] + "\",");
 28         }*/
 29         String s[] = {
 30                 "1",
 31                 "2",
 32                 "6",
 33                 "12",
 34                 "60",
 35                 "60",
 36                 "420",
 37                 "840",
 38                 "2520",
 39                 "2520",
 40                 "27720",
 41                 "27720",
 42                 "360360",
 43                 "360360",
 44                 "360360",
 45                 "720720",
 46                 "12252240",
 47                 "12252240",
 48                 "232792560",
 49                 "232792560",
 50                 "232792560",
 51                 "232792560",
 52                 "5354228880",
 53                 "5354228880",
 54                 "26771144400",
 55                 "26771144400",
 56                 "80313433200",
 57                 "80313433200",
 58                 "2329089562800",
 59                 "2329089562800",
 60                 "72201776446800",
 61                 "144403552893600",
 62                 "144403552893600",
 63                 "144403552893600",
 64                 "144403552893600",
 65                 "144403552893600",
 66                 "5342931457063200",
 67                 "5342931457063200",
 68                 "5342931457063200",
 69                 "5342931457063200",
 70                 "219060189739591200",
 71                 "219060189739591200",
 72                 "9419588158802421600",
 73                 "9419588158802421600",
 74                 "9419588158802421600",
 75                 "9419588158802421600",
 76                 "442720643463713815200",
 77                 "442720643463713815200",
 78                 "3099044504245996706400",
 79                 "3099044504245996706400",
 80                 "3099044504245996706400",
 81                 "3099044504245996706400",
 82                 "164249358725037825439200",
 83                 "164249358725037825439200",
 84                 "164249358725037825439200",
 85                 "164249358725037825439200",
 86                 "164249358725037825439200",
 87                 "164249358725037825439200",
 88                 "9690712164777231700912800",
 89                 "9690712164777231700912800",
 90                 "591133442051411133755680800",
 91                 "591133442051411133755680800",
 92                 "591133442051411133755680800",
 93                 "1182266884102822267511361600",
 94                 "1182266884102822267511361600",
 95                 "1182266884102822267511361600",
 96                 "79211881234889091923261227200",
 97                 "79211881234889091923261227200",
 98                 "79211881234889091923261227200",
 99                 "79211881234889091923261227200",
100                 "5624043567677125526551547131200",
101                 "5624043567677125526551547131200",
102                 "410555180440430163438262940577600",
103                 "410555180440430163438262940577600",
104                 "410555180440430163438262940577600",
105                 "410555180440430163438262940577600",
106                 "410555180440430163438262940577600",
107                 "410555180440430163438262940577600",
108                 "32433859254793982911622772305630400",
109                 "32433859254793982911622772305630400",
110                 "97301577764381948734868316916891200",
111                 "97301577764381948734868316916891200",
112                 "8076030954443701744994070304101969600",
113                 "8076030954443701744994070304101969600",
114                 "8076030954443701744994070304101969600",
115                 "8076030954443701744994070304101969600",
116                 "8076030954443701744994070304101969600",
117                 "8076030954443701744994070304101969600",
118                 "718766754945489455304472257065075294400",
119                 "718766754945489455304472257065075294400",
120                 "718766754945489455304472257065075294400",
121                 "718766754945489455304472257065075294400",
122                 "718766754945489455304472257065075294400",
123                 "718766754945489455304472257065075294400",
124                 "718766754945489455304472257065075294400",
125                 "718766754945489455304472257065075294400",
126                 "69720375229712477164533808935312303556800",
127                 "69720375229712477164533808935312303556800",
128                 "69720375229712477164533808935312303556800",
129                 "69720375229712477164533808935312303556800",
130         };
131         while(cin.hasNext()){
132             int n = cin.nextInt();
133             System.out.println(s[n-1]);
134         }
135     }
136 }

 

NYOJ--517--最小公倍数(大数打表)

标签:内存   integer   style   ima   nal   tip   problem   can   public   

原文地址:http://www.cnblogs.com/rtdd/p/6775167.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!