码迷,mamicode.com
首页 > 其他好文 > 详细

Spark工程方法技巧总(未完)

时间:2017-04-30 17:21:43      阅读:488      评论:0      收藏:0      [点我收藏+]

标签:_id   url   ini   icc   upd   oracle   password   art   dfs   

  最近做一个oracle项目迁移工作,跟着spark架构师学着做,进行一些方法的总结。

  1、首先,创建SparkSession对象(老版本为sparkContext)

  val session = SparkSession.builder().appName("app1").getOrCreate()

  2、数据的更新时间配置表,选用mysql,就是说每次结果数据计算写入mysql后,还会将此次数据的更新时间写入数据配置表。 那么在代码里,需要创建配置表的case class,配置与构造数据库schema信息,url,用户名密码等,随后根据配置表中的不同app进行数据的过滤。

  val appId = "1"

  case class DBInformation(url:Stirng,schema:String,user:String,passwd:String)

  val mysqlDB = DBInformation("jdbc:mysql://....",schema,user,passowrd)

  val tableName = mysqlDB.schema + "." + name

  val props = new Properties()

  props.setProperty("user",mysqlDB.user)

  props.setProperty("password",mysqlDB.passwd)

  props.setProperty(JDBCOptions.JDBC_DRIVER_CLASS,"com.mysql.jdbc.Driver")

  val record = session.read.jdbc(mysqlDB.url,tableName,props).filter(row => row.getAs[Int]("app_id") == appId).take(1)

  //第一次写入,木有数据

  if(0 == record.size){

    DBInfoMation(null,null,null)

  }else{

    DBInfoMation(record(0).getTimestmap(1),recode(0).getTimestamp(2),recode(0)..getTimestamp(3))  

  3、注册UDF,由于原来是用oracle的语法,现如今转为sparksql,需要注册一些UDF,来兼容原有oracle的函数

  def registerUDF(session:SparkSession) : Unit = {

    session.udf.register("UDF",(value : String,modifieds:Array[String) => {

      val filter = modifieds.filter(_!=null)

      if(!filter.isEmpty){

        filter.max

      }else{

        null

      }

     })

   {

  4、很多计算是需要过往的历史数据的,在第一次初始化的时候,先对历史数据进行缓存。这里有个知识点,会将一直计算的同步数据进行checkPoint落地磁盘,如果发现历史时间在同步时间之后,则加载历史数据,否则就加载同步数据。

  val (updateTime,initData) = if(historyTime.after(syncTime)){

    (historyTime,initFromHistory(tableName))

  } else {

    (syncTime,initFromCheckPoint(syncTime))

  }

  //记录schema

  schema = initData.schema

  //baseData为缓存在内存的数据,并根据数据量进行repartition

  baseData = initData.repartition(numPartitions,_partitionColumns.map(new Column()):_*).rdd.persisit(storageLevel)

  //触发action动作

  baseData.foreach(_=>Unit)

  5、有一种情况,下游三个表要关联生成一张大表,这三张表的数据来源于消息中间件中的三个topic,但是数据可能不是同时到来,那么就需要将历史加载的大表拆根据ID拆分为三个小表,然后逐个append到三个小表上,随后再根据ID关联起来,再组成最终表。

  val table1 = new createUpdatingTable(session,"tableName1",topicConf,numPartitons,...)

  val table2 = new createUpdatingTable (session,"tableName2",topicConf1,numPartitions,...)

  val table3 = new createUpdatingTable(session,"tableName3","topicConf2,numPartitions,...)

  val mergeBaseTable = (session,"mergeTableName",Array(table1,table2,table3),finallyColumn,finallyPartitions...)

  mergeBaseTable.updateAndGetData(Some(genDataFilter(currentTime)))

  //三表拆分与合并

  val tmpPartitionKey = "pd_code"

  if(baseData != null) {

    val oldData = getOldData(baseData,keyDF.rdd,tmpPartitionKey)

    oldDf = session.createDataFrame(oldData,schema)

    .repartition(numPartitions,new Column(tmpPartitionKey))

    .persist(storageLevel)

  }

  val table1 = updateShardTable(oldDf,inDfs(0)...).sparksession.createDataFrame(data,schema)

  val table2 = ....

  val table3 = ....

  

  6、三表key进行合并,通过sql进行三来源表合并

  val keySet = keys.collect()

  val broadcastKeys = session.sparkContext.broadCast(keySet)

  baseData.mapPartitions({iter =>

    val set = broadcastKey.value.toSet

    iter.filter(row=>set.contains(row.getAs[Any](keyCol)))

  },true)

  val sql ="select a.column,b.column,c.column.... from table1 a left join table2 b on a.pd_code = b.pd_code......

  val finallyTable = session.sql(sql)

 

Spark工程方法技巧总(未完)

标签:_id   url   ini   icc   upd   oracle   password   art   dfs   

原文地址:http://www.cnblogs.com/yangsy0915/p/6789689.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!