码迷,mamicode.com
首页 > 其他好文 > 详细

Binary Tree Tilt

时间:2017-05-01 13:36:21      阅读:168      评论:0      收藏:0      [点我收藏+]

标签:put   solution   input   sub   out   between   val   bsp   integer   

Given a binary tree, return the tilt of the whole tree.

The tilt of a tree node is defined as the absolute difference between the sum of all left subtree node values and the sum of all right subtree node values. Null node has tilt 0.

The tilt of the whole tree is defined as the sum of all nodes‘ tilt.

Example:

Input: 
         1
       /         2     3
Output: 1
Explanation: 
Tilt of node 2 : 0
Tilt of node 3 : 0
Tilt of node 1 : |2-3| = 1
Tilt of binary tree : 0 + 0 + 1 = 1

 

Note:

  1. The sum of node values in any subtree won‘t exceed the range of 32-bit integer.
  2. All the tilt values won‘t exceed the range of 32-bit integer.

 

 1 /**
 2  * Definition for a binary tree node.
 3  * public class TreeNode {
 4  *     int val;
 5  *     TreeNode left;
 6  *     TreeNode right;
 7  *     TreeNode(int x) { val = x; }
 8  * }
 9  */
10 public class Solution {
11     public int findTilt(TreeNode root) {
12         if (root == null) return 0;
13         if (root.left == null && root.right == null) return 0;
14         
15         int myTilt = findNodeTilt(root);
16         return myTilt + findTilt(root.left) + findTilt(root.right);
17     }
18     
19     public int findNodeTilt(TreeNode root) {
20         if (root == null) return 0;
21         if (root.left == null && root.right == null) return 0;
22         int leftSum = subtreeSum(root.left);
23         int rightSum = subtreeSum(root.right);
24         
25         return Math.abs(leftSum - rightSum);
26     }
27     
28     private int subtreeSum(TreeNode root) {
29         if (root == null) return 0;
30         if (root.left == null && root.right == null) return root.val;
31         
32         return root.val + subtreeSum(root.left) + subtreeSum(root.right);
33     }
34 }

 

Binary Tree Tilt

标签:put   solution   input   sub   out   between   val   bsp   integer   

原文地址:http://www.cnblogs.com/amazingzoe/p/6791732.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!