标签:turn 动物 enter 这一 memory tab mis int 种类
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 71361 | Accepted: 21131 |
Description
Input
Output
Sample Input
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
Sample Output
3
欸困惑许久的一道题,寒假学并查集时已经遇见,卡在带权并查集一直没时间or感觉很复杂就没学,前几日突然想起,便想起他了.
带权并查集感觉在于对向量偏移的理解和对getf()函数递归查找祖先的深刻理解,怎奈数学砸砸看见数学就头疼>_<
本题体面给出了三个类,并查集的作用:将具有相同性质的某些点归到一颗树里,他们有共同的祖先.
难不成三个类要用三个并查集?显然用三个只会更加复杂,我们不妨利用带权并查集点到祖先的距离的不同来表示点与祖先的关系,将所有的点归到一颗树下,假设有两个点x,y在一颗树里且我们知道其到祖先的距离d[x],d[y],
显然利用这两个"距离"(关系)我们足以推出x,y的关系,这便涉及到向量了.
带权并查集主要就是在getf()函数递归的过程中顺便改变到根节点的距离这一步!合并函数中也需要进行小小的改变.
推论:已知x,x的父亲t=f[x],根祖先root和d[x],d[t]; 我们要做的就是根据 d[x],d[t]更新出当前正确的d[x]的值.
穷举出所有的可能后:{0,1,2}--{0,1,2}不难得出结论 d[x]=(d[x]+d[t])%3;
为了保证 d[t]的值是x的父亲到祖先的距离我们需要先递归x的父亲更新他父亲的距离......
如果不先进行递归的话,d[t]的值可能并不是t到其根的距离导致结果错误!
merg函数类似利用向量推出公式即可,利用0,1,2的巧妙之处在于可以用(d-1)直接表示出x与y的关系.
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int f[50005],d[50005];
int getf(int v)
{
if(f[v]==v) return v;
int t=f[v];
f[v]=getf(f[v]);
d[v]=(d[v]+d[t])%3;
return f[v];
}
void merg(int x,int y,int rx,int ry,int D)
{
f[ry]=rx;
d[ry]=(3-d[y]+(D-1)+d[x])%3;
}
int main()
{
int n,k,x,y,D,ans=0,i,j;
cin>>n>>k;
for(i=1;i<=n;++i) f[i]=i;
memset(d,0,sizeof(d));
while(k--){
scanf("%d%d%d",&D,&x,&y);
if(x>n||y>n||(x==y&&D==2)) {++ans;continue;}
int rx=getf(x),ry=getf(y);
if(rx==ry){
if((D-1)!=(3-d[x]+d[y])%3) ++ans;
}
else merg(x,y,rx,ry,D);
}
cout<<ans<<endl;
return 0;
}
标签:turn 动物 enter 这一 memory tab mis int 种类
原文地址:http://www.cnblogs.com/zzqc/p/6813464.html