码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习笔记(Washington University)- Regression Specialization-week six

时间:2017-05-07 19:50:16      阅读:125      评论:0      收藏:0      [点我收藏+]

标签:str   define   less   noi   over   distance   .com   http   sim   

1. Fit locally

If the true model changes much, we want to fit our function locally to

different regions of the input space. 

 

2. Scaled distance

技术分享\

we put weight on each input to define relative importance.

 

3. KNN

KNN is really sensitive to regions with little data and also noise in the data.

if we can get infinite amount of noiseless data, the 1-KNN will leads to no bias and variance.

boudary effect: near the boudary, the prediction tends to avergae over the same data sample.

Discontinuities: jumps in the prediction values.

the more dimensions d you have, the more points N you need to cover the space.

procedure:

1.find k closet x(i) in dataset

2,predict the value(the average value of k samples)

 

weighted KNN:

weight more similar data more than those similar in list.

 

4. kernal

How the weights gonna decay as a function of the distance between a given point and query point

kernal has bounded support, only subset of data needed to compute local fit.

we can also use the validation set or cross validation to choose the lambda.

技术分享

Gaussian kernal:

技术分享

and the weights never goes to zero for gaussian kernal.

 

机器学习笔记(Washington University)- Regression Specialization-week six

标签:str   define   less   noi   over   distance   .com   http   sim   

原文地址:http://www.cnblogs.com/climberclimb/p/6821431.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!