标签:swa fat void uri reg .com 软件 type argv
二次联通门 : BZOJ 4196: [Noi2015]软件包管理器
/* BZOJ 4196: [Noi2015]软件包管理器 树链剖分 树链剖分 , 用线段树维护链上的和与子树的和 对于1操作, 每次预先查询待修改点x点的深度 后查询1到x这条链上有多少已安装的, 然后上面的值减下面的值 对于2操作,每次查询以x为根的子树的大小 修改整颗子树即可.. 说白了其实就是板子题 */ #include <cstdio> #define Max 500090 inline int min (int a, int b) { return a < b ? a : b; } inline int max (int a, int b) { return a > b ? a : b; } inline int swap (int &a, int &b) { int now = a; a = b; b = now; } void read (int &now) { now = 0; register char word = getchar (); while (word < ‘0‘ || word > ‘9‘) word = getchar (); while (word >= ‘0‘ && word <= ‘9‘) { now = now * 10 + word - ‘0‘; word = getchar (); } } struct Edge_Type { struct Edge { int to; int next; }; Edge edge[Max << 2]; int Edge_Count; int edge_list[Max]; void Add_Edge (int from, int to) { Edge_Count++; edge[Edge_Count].to = to; edge[Edge_Count].next = edge_list[from]; edge_list[from] = Edge_Count; Edge_Count++; edge[Edge_Count].to = from; edge[Edge_Count].next = edge_list[to]; edge_list[to] = Edge_Count; } }; Edge_Type Graph; struct Segment_Tree_Type { struct Segment_Tree { int l; int r; int Mid; int Sum; int Ruri; }; Segment_Tree tree[Max << 3]; void Build (int l, int r, int now) { tree[now].l = l; tree[now].r = r; if (l == r) return ; tree[now].Mid = (l + r) >> 1; Build (l, tree[now].Mid, now << 1); Build (tree[now].Mid + 1, r, now << 1 | 1); } int Query_Section_Sum (int l, int r, int now) { if (tree[now].l == l && tree[now].r == r) return tree[now].Sum; if (tree[now].Ruri == 1) { tree[now << 1].Sum = tree[now << 1].r - tree[now << 1].l + 1; tree[now << 1].Ruri = 1; tree[now << 1 | 1].Sum = tree[now << 1 | 1].r - tree[now << 1 | 1].l + 1; tree[now << 1 | 1].Ruri = 1; tree[now].Ruri = 0; } else if (tree[now].Ruri == 2) { tree[now << 1].Sum = 0; tree[now << 1 | 1].Sum = 0; tree[now << 1].Ruri = 2; tree[now << 1 | 1].Ruri = 2; tree[now].Ruri = 0; } tree[now].Sum = tree[now << 1].Sum + tree[now << 1 | 1].Sum; if (r <= tree[now].Mid) return Query_Section_Sum (l, r, now << 1); else if (l > tree[now].Mid) return Query_Section_Sum (l, r, now << 1 | 1); else return Query_Section_Sum (l, tree[now].Mid, now << 1) + Query_Section_Sum (tree[now].Mid + 1, r, now << 1 | 1); } void Change_Section (int l, int r, int now, int to) { if (tree[now].l == l && tree[now].r == r) { if (to == 1) { tree[now].Sum = tree[now].r - tree[now].l + 1; tree[now].Ruri = 1; return ; } else if (to == 2) { tree[now].Sum = 0; tree[now].Ruri = 2; return ; } } if (tree[now].Ruri == 1) { tree[now << 1].Sum = tree[now << 1].r - tree[now << 1].l + 1; tree[now << 1].Ruri = 1; tree[now << 1 | 1].Sum = tree[now << 1 | 1].r - tree[now << 1 | 1].l + 1; tree[now << 1 | 1].Ruri = 1; tree[now].Ruri = 0; } else if (tree[now].Ruri == 2) { tree[now << 1].Sum = 0; tree[now << 1 | 1].Sum = 0; tree[now << 1].Ruri = 2; tree[now << 1 | 1].Ruri = 2; tree[now].Ruri = 0; } if (r <= tree[now].Mid) Change_Section (l, r, now << 1, to); else if (l > tree[now].Mid) Change_Section (l, r, now << 1 | 1, to); else { Change_Section (l, tree[now].Mid, now << 1, to); Change_Section (tree[now].Mid + 1, r, now << 1 | 1, to); } tree[now].Sum = tree[now << 1].Sum + tree[now << 1 | 1].Sum; } }; Segment_Tree_Type Tree; struct Tree_Chain_Get_Type { struct Point_Type { int size; int deep; int father; int chain_up_point; int tree_number; int end; }; Point_Type point[Max]; int Count; void Dfs_1 (int now, int father) { int pos = Count++; point[now].deep = point[father].deep + 1; point[now].father = father; for (int i = Graph.edge_list[now]; i; i = Graph.edge[i].next) if (Graph.edge[i].to != father) Dfs_1 (Graph.edge[i].to, now); point[now].size = Count - pos; } void Dfs_2 (int now, int chain) { int pos = 0; point[now].chain_up_point = chain; point[now].tree_number = ++Count; for (int i = Graph.edge_list[now]; i; i = Graph.edge[i].next) if (!point[Graph.edge[i].to].tree_number && point[Graph.edge[i].to].size > point[pos].size) pos = Graph.edge[i].to; if (pos) Dfs_2 (pos, chain); for (int i = Graph.edge_list[now]; i; i = Graph.edge[i].next) if (!point[Graph.edge[i].to].tree_number) Dfs_2 (Graph.edge[i].to, Graph.edge[i].to); point[now].end = Count; } void Chain_Change (int x, int y, int type) { while (point[x].chain_up_point != point[y].chain_up_point) { if (point[point[x].chain_up_point].deep < point[point[y].chain_up_point].deep) swap (x, y); Tree.Change_Section (point[point[x].chain_up_point].tree_number, point[x].tree_number, 1, type); x = point[point[x].chain_up_point].father; } Tree.Change_Section (min (point[x].tree_number, point[y].tree_number), max (point[x].tree_number, point[y].tree_number), 1, type); return ; } int Chain_Query (int x, int y) { int Answer = 0; while (point[x].chain_up_point != point[y].chain_up_point) { if (point[point[x].chain_up_point].deep < point[point[y].chain_up_point].deep) swap (x, y); Answer += Tree.Query_Section_Sum (point[point[x].chain_up_point].tree_number ,point[x].tree_number, 1); x = point[point[x].chain_up_point].father; } Answer += Tree.Query_Section_Sum (min (point[x].tree_number, point[y].tree_number), max (point[x].tree_number, point[y].tree_number), 1); return Answer; } }; Tree_Chain_Get_Type Make; int N, M; int main (int argc, char *argv[]) { read (N); int x; for (int i = 2; i <= N; i++) { read (x); x++; Graph.Add_Edge (i, x); } Make.Dfs_1 (1, 0); Make.Count = 0; Make.Dfs_2 (1, 1); Tree.Build (1, N, 1); read (N); char type[10]; int now; while (N--) { scanf ("%s", type); read (x); x++; if (type[0] == ‘i‘) { now = Make.Chain_Query (1, x); Make.Chain_Change (1, x, 1); printf ("%d\n", Make.point[x].deep - now); } else { now = Tree.Query_Section_Sum (Make.point[x].tree_number, Make.point[x].end, 1); Tree.Change_Section (Make.point[x].tree_number, Make.point[x].end, 1, 2); printf ("%d\n", now); } } return 0; }
标签:swa fat void uri reg .com 软件 type argv
原文地址:http://www.cnblogs.com/ZlycerQan/p/6822431.html