码迷,mamicode.com
首页 > 其他好文 > 详细

ArrayList--源码阅读

时间:2017-05-08 00:31:20      阅读:209      评论:0      收藏:0      [点我收藏+]

标签:ngui   等于   hang   protect   dal   containe   contains   取消   change   

package java.util;


// ArrayList源码分析,ArrayList即使用数组实现的列表,是一种线性表

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    /**
     * Default initial capacity.
     * 默认初始化容量
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.
     * 共享的数组实例,供所有空列表(size==0,即elementData的长度为0)的实例使用
     * 作用是提供一个标记指针,判断当前列表是否为空列表
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * Shared empty array instance used for default sized empty instances. We
     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
     * first element is added.
     * 共享的空数组实例,供所有默认长度空列表(通过构造函数ArrayList()创建的)实例使用.
     * 对比DEFAULTCAPACITY_EMPTY_ELEMENTDATA和EMPTY_ELEMENTDATA,可以获得当第一个
     * 元素被添加至列表时,需要扩充多少内存空间.
     * 作用是提供一个标记指针,判断当前列表是否为一个默认容量的空数组
     */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer. Any
     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
     * will be expanded to DEFAULT_CAPACITY when the first element is added.
     * 列表元素所存储的缓冲数组.
     * 列表的容量即该缓冲数组的长度.
     * 所有 elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA 的空列表,当第一个
     * 元素被添加时,会将elementData的容量扩充为默认容量 DEFAULT_CAPACITY
     */
    // non-private to simplify nested class access  
    // 非私有,简化嵌套类访问权限. transient用来表示该域不是该对象串行化的一部分
    transient Object[] elementData; 
                                    

    /**
     * The size of the ArrayList (the number of elements it contains).
     * 列表的大小(列表所存储元素的总和)
     * @serial
     */
    private int size;

    /**
     * Constructs an empty list with the specified initial capacity.
     * 构造一个指定初始容量的空列表
     *
     * @param  initialCapacity  the initial capacity of the list
     * @throws IllegalArgumentException if the specified initial capacity
     *         is negative
     */
    public ArrayList(int initialCapacity) {
        //当初始化容量参数值大于0时,为elementData分配相应的内存空间
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        //当初始化容量参数值为0时,elementData DEFAULTCAPACITY_EMPTY_ELEMENTDATA 空数组
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        //当初始化容量参数小于0时,抛出异常
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }

    /**
     * Constructs an empty list with an initial capacity of ten.
     * 构造一个初始容量为10的空列表
     */
    public ArrayList() {
        //elementData 置成EMPTY_ELEMENTDATA 空数组
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

    /**
     * Constructs a list containing the elements of the specified
     * collection, in the order they are returned by the collection‘s
     * iterator.
     * 通过一个包含一些元素的指定的集合,通过迭代器按顺序地取出这些元素,用来构造一个列表
     *
     * @param c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public ArrayList(Collection<? extends E> c) {
        //调用集合c.toArray,方法获得一个元素素组
        elementData = c.toArray();
        //将列表大小置为elmentData的长度,如果长度不为0
        if ((size = elementData.length) != 0) {
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            /* 这个注释比较有意思了,意思是 c.toArray方法可能返回一个错误的Object[].
             * 这是JDK的一个BUG JDK-6260652
             * 在调用Arrays.asList("Larry", "Moe", "Curly")时,返回的并不是java.util.Arralist
             * 而是Arrays的静态嵌套类 java.util.Arrays$ArrayList的实例
             * java.util.Arrays$ArrayList实现了Collection接口,
             * 调用java.util.Arrays$ArrayList.toArray()时,可能会返回错误的Object[]
             * 源码: (注意这里的ArrayList 为Arrays的静态嵌套类,与java.util.Arralist不同)
             *  //Arrays:
             *  public static <T> List<T> asList(T... a) {
             *      return new ArrayList<>(a);
             *  }
             *  
             *  //Arrays.ArrayList
             *  ArrayList(E[] array) {
             *    //直接将成员变量a置成了array
             *    a = Objects.requireNonNull(array);
             *  }
             *  
             *  public Object[] toArray(){
             *      //toArray的时候,也只是将传进来的数组拷贝一份给返回了,虽说向上转型为Object[]
             *      //但返回数组仍然会为原始的数组类型,所以elementData.getClass()!= Object[].class
             *      //若所以elementData数组为String[]类型的数组,此时elementData.getClass()==String[].class
             *      //那么执行elementData[i] = new Object();时
             *      //是无法将Object向下转型为String存放的,会抛出ArrayStoreException异常
             *      return a.clone();
             *  } 
             *  为了防止上述问题,在elementData.getClass()!= Object[].class时,用Arrays.copyOf方法,将
             *  elementData转换为一个真正的Object数组
             */
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        }
        //如果长度为0
        else {
            // replace with empty array.
            // elementData替换为空数组EMPTY_ELEMENTDATA
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

    /**
     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
     * list‘s current size.  An application can use this operation to minimize
     * the storage of an <tt>ArrayList</tt> instance.
     * 将列表容量修剪为列表的当前大小。该操作可将ArrayList实例的占用的存储空间减小到最少.
     */
    public void trimToSize() {
        /* modCount为AbstractList的一个成员变量,用来标记列表被修改的次数,实现fast-fail机制
         * fast-fail--快速失败,它是Java集合的一种错误检测机制。
         * 当多个线程对集合进行结构上的改变的操作时,有可能会产生fail-fast机制。
         * 记住是有可能,而不是一定。例如:假设存在两个线程(线程1、线程2),
         * 线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,
         * 而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 
         * ConcurrentModificationException 异常,从而产生fail-fast机制。
         */
        modCount++;
        
        //当列表实际长度小于容量时
        if (size < elementData.length) {
            //若为空列表,则将elementData置为空数组EMPTY_ELEMENTDATA
            //反之拷贝一个长度为size的数组,赋值为elementData
            elementData = (size == 0)
              ? EMPTY_ELEMENTDATA
              : Arrays.copyOf(elementData, size);
        }
    }

    /**
     * Increases the capacity of this <tt>ArrayList</tt> instance, if
     * necessary, to ensure that it can hold at least the number of elements
     * specified by the minimum capacity argument.
     * 必要时,为ArrayList实例扩充容量, 来确保当前ArrayList能容纳下minCapacity参数
     * 所指定的最小数量的元素
     * 
     * @param   minCapacity   the desired minimum capacity
     *                        所需的最小容量,即最少能容纳新添加元素的容量
     */
    public void ensureCapacity(int minCapacity) {
        //如果当前列表不为默认容量的空列表,minExpand(最小扩充容量)为0
        //如果当前列表为默认容量的空列表,minExpand(最小扩充容量)为默认容量10
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
            // any size if not default element table
            ? 0
            // larger than default for default empty table. It‘s already
            // supposed to be at default size.
            : DEFAULT_CAPACITY;

        //如果所需的最小容量比最小扩充容量要大
        if (minCapacity > minExpand) {
            //确保正确的容量
            ensureExplicitCapacity(minCapacity);
        }
    }

    //确保容量,内部函数
    private void ensureCapacityInternal(int minCapacity) {
        //如果当前列表为默认容量空列表
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            //minCapacity小于DEFAULT_CAPACITY时,取DEFAULT_CAPACITY
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

    //确保明确的容量
    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // overflow-conscious code
        // 当前列表容量不够时,扩充容量
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    /**
     * The maximum size of array to allocate.
     * Some VMs reserve some header words in an array.
     * Attempts to allocate larger arrays may result in
     * OutOfMemoryError: Requested array size exceeds VM limit
     * 创建一个数组允许被分配的最大内存容量 
     * 一些虚拟机会在数组头部存储数组的元信息(引用Java Memory management中的描述): 
     *  1.Class--指向数组Class类型的指针,如果为整形数组,则指向int[].class 
     *  2.Flags--一些标志的集合,描述对象的状态、哈希码、对象的类型(即是否为一个数组)
     *  3.Lock --对象的同步信息,也就是说,对象是否正在同步
     *  4.Size --数组长度
     * 尝试分配更大长度的数组可能引起 OutOfMemoryError :
     * 请求的数组长度超出虚拟机限制
     *     Integer.MAX_VALUE = 0x7fffffff
     *     减去8即排除需要存储元数据的内存开销
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * Increases the capacity to ensure that it can hold at least the
     * number of elements specified by the minimum capacity argument.
     * 为列表扩容,来确保其能容纳参数minCapacity所指定数量的元素
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        // 尝试扩充新容量为原来的1.5倍
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        // 扩充1.5倍不够,就将新容量置成最小所需的容量
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        // 不好了,新容量超出了虚拟机单数组大小限制了!
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        // minCapacity 通常与列表的大小十分接近,所以这是一场胜利:
        // 直接创建一个新的数组,将原来数组的数据拷贝进去
        // WTF! 没有realloc没有free?? 就是这么简单粗暴...
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
    /* Arrays.copyOf源码贴下
     * public static <T,U> T[] copyOf(U[] original, int newLength
     *     , Class<? extends T[]> newType) {
     *      @SuppressWarnings("unchecked")
     *      //直接创建一个新的newType类型的数组,把原数组数据拷贝进去
     *      T[] copy = ((Object)newType == (Object)Object[].class)
     *            //碎碎念下,C语言里,新建变量指定长度的数组也蛮想这样写的...
     *          ? (T[]) new Object[newLength]
     *          : (T[]) Array.newInstance(newType.getComponentType(), newLength);
     *      System.arraycopy(original, 0, copy, 0,
     *                       Math.min(original.length, newLength));
     *      return copy;
     * }
     */

    private static int hugeCapacity(int minCapacity) {
        //minCapacity都小于0了,扩充容量超出了最大正整数值,堆栈溢出
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        
        //扩充后大于Integer.MAX_VALUE-8,返回Integer.MAX_VALUE
        //反之返回MAX_ARRAY_SIZE
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

    /**
     * Returns the number of elements in this list.
     *
     * @return the number of elements in this list
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this list contains no elements.
     *
     * @return <tt>true</tt> if this list contains no elements
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns <tt>true</tt> if this list contains the specified element.
     * More formally, returns <tt>true</tt> if and only if this list contains
     * at least one element <tt>e</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
     *
     * @param o element whose presence in this list is to be tested
     * @return <tt>true</tt> if this list contains the specified element
     */
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }

      
    /**
     * Returns the index of the first occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the lowest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     * 返回第一个等于参数对象的序号,没有则返回-1
     */
    public int indexOf(Object o) {
        //万恶的null
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * Returns the index of the last occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the highest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     * 返回最后一个等于参数对象的序号,没有则返回-1,从后往前找而已
     */
    public int lastIndexOf(Object o) {
        //万恶的null
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
     * elements themselves are not copied.)
     *
     * @return a clone of this <tt>ArrayList</tt> instance
     * 虽说建了个新ArrayList实例,存的东西还是浅拷贝呢
     */
    public Object clone() {
        try {
            ArrayList<?> v = (ArrayList<?>) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn‘t happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    /**
     * Returns an array containing all of the elements in this list
     * in proper sequence (from first to last element).
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this list.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this list in
     *         proper sequence
     */
    public Object[] toArray() {
        //复制一个吧
        //比Arrays.ArrayList.toArray的直接clone要科学
        //elementData是一个真的Object[]
        return Arrays.copyOf(elementData, size);
    }

    /**
     * Returns an array containing all of the elements in this list in proper
     * sequence (from first to last element); the runtime type of the returned
     * array is that of the specified array.  If the list fits in the
     * specified array, it is returned therein.  Otherwise, a new array is
     * allocated with the runtime type of the specified array and the size of
     * this list.
     *
     * <p>If the list fits in the specified array with room to spare
     * (i.e., the array has more elements than the list), the element in
     * the array immediately following the end of the collection is set to
     * <tt>null</tt>.  (This is useful in determining the length of the
     * list <i>only</i> if the caller knows that the list does not contain
     * any null elements.)
     * 将elementData存进传进来的参数数组中
     *
     * @param a the array into which the elements of the list are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose.
     * @return an array containing the elements of the list
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this list
     * @throws NullPointerException if the specified array is null
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a‘s runtime type, but my contents:
            // 参数数组长度不够,创建一个新的数组,复制数据并返回
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        
        //长度够的话,直接写进参数数组好了
        System.arraycopy(elementData, 0, a, 0, size);
        
        //参数数组长度比列表大小要大的话,在size处标记null
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    /**
     * Returns the element at the specified position in this list.
     *
     * @param  index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
        //序号范围检查
        rangeCheck(index);

        return elementData(index);
    }

    /**
     * Replaces the element at the specified position in this list with
     * the specified element.
     *
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E set(int index, E element) {
        //序号范围检查
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    /**
     * Appends the specified element to the end of this list.
     * 在列表最后添加一个元素 push!
     * @param e element to be appended to this list
     * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
                                           // 这个函数,已经增加了modCount
        //push
        elementData[size++] = e;
        return true;
    }
    
    /*
        arraycopy(Object src,   原数组
                  int  srcPos,  从原数组位置开始复制
                  Object dest,  目标数组
                  int destPos,  从目标数组的位置开始粘贴
                  int length);  复制多少个元素
    */

    /**
     * Inserts the specified element at the specified position in this
     * list. Shifts the element currently at that position (if any) and
     * any subsequent elements to the right (adds one to their indices).
     * 在指定位置添加元素
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public void add(int index, E element) {
        //序号范围检查
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!! 怨念..
        //把index,及index后的元素都向后移动一个位置,线性存储我看出来了
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        //index置成element
        elementData[index] = element;
        size++;
    }

    /**
     * Removes the element at the specified position in this list.
     * Shifts any subsequent elements to the left (subtracts one from their
     * indices).
     *
     * @param index the index of the element to be removed
     * @return the element that was removed from the list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E remove(int index) {
        //序号范围检查
        rangeCheck(index);

        modCount++;
        //把删除的对象取出来,作返回值
        E oldValue = elementData(index);

        //把index后的元素向前移动一个位置
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        
        //删除最后一个元素,取消引用,回收内存
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

    /**
     * Removes the first occurrence of the specified element from this list,
     * if it is present.  If the list does not contain the element, it is
     * unchanged.  More formally, removes the element with the lowest index
     * <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
     * (if such an element exists).  Returns <tt>true</tt> if this list
     * contained the specified element (or equivalently, if this list
     * changed as a result of the call).
     * 从列表中删除指定对象,由于存在对象才会删除,所以跳过了范围检查
     *
     * @param o element to be removed from this list, if present
     * @return <tt>true</tt> if this list contained the specified element
     */
    public boolean remove(Object o) {
        //万恶的null
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            //如果存了多个相同对象的话,还是会只删除第一个的
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }

    /*
     * Private remove method that skips bounds checking and does not
     * return the value removed.
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

    /**
     * Removes all of the elements from this list.  The list will
     * be empty after this call returns.
     */
    public void clear() {
        modCount++;

        // clear to let GC do its work
        // 对每个元素取消引用,回收内存
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        //列表大小置0
        size = 0;
    }

    /**
     * Appends all of the elements in the specified collection to the end of
     * this list, in the order that they are returned by the
     * specified collection‘s Iterator.  The behavior of this operation is
     * undefined if the specified collection is modified while the operation
     * is in progress.  (This implies that the behavior of this call is
     * undefined if the specified collection is this list, and this
     * list is nonempty.)
     * 将参数集合插入列表
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        
        //将集合转为数组,拷贝到列表最后
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * Inserts all of the elements in the specified collection into this
     * list, starting at the specified position.  Shifts the element
     * currently at that position (if any) and any subsequent elements to
     * the right (increases their indices).  The new elements will appear
     * in the list in the order that they are returned by the
     * specified collection‘s iterator.
     * 将参数集合插入列表指定位置
     * @param index index at which to insert the first element from the
     *              specified collection
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        
        //将从index开始,的numNew个元素移动到列表末尾
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        //将参数集合填充到中间位置
        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * Removes from this list all of the elements whose index is between
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
     * Shifts any succeeding elements to the left (reduces their index).
     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
     * (If {@code toIndex==fromIndex}, this operation has no effect.)
     * 删除一段范围的元素
     * @throws IndexOutOfBoundsException if {@code fromIndex} or
     *         {@code toIndex} is out of range
     *         ({@code fromIndex < 0 ||
     *          fromIndex >= size() ||
     *          toIndex > size() ||
     *          toIndex < fromIndex})
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        
        //将toIndex后的元素向前移动到fromIndex的位置
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // 列表末尾toIndex-fromIndex个元素取消引用,释放内存
        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }

    /**
     * Checks if the given index is in range.  If not, throws an appropriate
     * runtime exception.  This method does *not* check if the index is
     * negative: It is always used immediately prior to an array access,
     * which throws an ArrayIndexOutOfBoundsException if index is negative.
     */
    private void rangeCheck(int index) {
        //范围检查
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index) {
        //插入返回检查,index<0
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * Constructs an IndexOutOfBoundsException detail message.
     * Of the many possible refactorings of the error handling code,
     * this "outlining" performs best with both server and client VMs.
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    /**
     * Removes from this list all of its elements that are contained in the
     * specified collection.
     * 删除所有集合参数所包含的元素
     *
     * @param c collection containing elements to be removed from this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }

    /**
     * Retains only the elements in this list that are contained in the
     * specified collection.  In other words, removes from this list all
     * of its elements that are not contained in the specified collection.
     * 保留集合所包含的元素
     * @param c collection containing elements to be retained in this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }

    private boolean batchRemove(Collection<?> c, boolean complement) {
        //elementData的引用,声明为final,不允许修改这个引用地址
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            //遍历elementData
            for (; r < size; r++)
                //removeAll complement为假:即如果集合不包含这个元素,则保留元素
                //retainAll complement为真:即如果集合包含这个元素,则保留元素
                if (c.contains(elementData[r]) == complement)
                    //将当前元素按顺序写入elementData,从0开始. r>=w,所以这里没啥问题
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            // 即使c.contains()抛出异常,也保持结果与AbstractCollectiony的行为一致
            // r!= size , 即在遍历列表时抛出了异常,把r后的元素拷贝至w位置后
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                //w加上末尾补充的元素数量
                w += size - r;
            }
            //剩余元素数量与size不一致的时候
            if (w != size) {
                // clear to let GC do its work
                // 清除w位置后的引用,释放内存
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }

    /**
     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
     * is, serialize it).
     *
     * @serialData The length of the array backing the <tt>ArrayList</tt>
     *             instance is emitted (int), followed by all of its elements
     *             (each an <tt>Object</tt>) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i<size; i++) {
            s.writeObject(elementData[i]);
        }

        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i<size; i++) {
                a[i] = s.readObject();
            }
        }
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence), starting at the specified position in the list.
     * The specified index indicates the first element that would be
     * returned by an initial call to {@link ListIterator#next next}.
     * An initial call to {@link ListIterator#previous previous} would
     * return the element with the specified index minus one.
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence).
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @see #listIterator(int)
     */
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }

    /**
     * Returns an iterator over the elements in this list in proper sequence.
     *
     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @return an iterator over the elements in this list in proper sequence
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

    /**
     * An optimized version of AbstractList.Itr
     * AbstractList.Itr的优化版本
     */
    private class Itr implements Iterator<E> {
        // index of next element to return
        // 下个返回元素的位置
        int cursor;       
        // index of last element returned; -1 if no such
        // 最后一个返回元素的位置,如果不存在则标记为-1
        int lastRet = -1;
        // 期望的修改次数,如果modCount没有按照预期变化,会抛出异常,实现fast-fail机制
        int expectedModCount = modCount;

        public boolean hasNext() {
            return cursor != size;
        }

        //返回下个元素
        @SuppressWarnings("unchecked")
        public E next() {
            //检查操作时列表是否被修改了
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            //下个返回元素的位置置成i+1
            cursor = i + 1;
            //lastRet置成i,返回第i个元素
            return (E) elementData[lastRet = i];
        }

        //删除
        public void remove() {
            //迭代完毕了,无法再删除了
            if (lastRet < 0)
                throw new IllegalStateException();
            
            //检查操作时列表是否被修改了
            checkForComodification();

            try {
                //删除当前返回的最后一个元素
                ArrayList.this.remove(lastRet);
                //下个返回元素的位置置为lastRet
                cursor = lastRet;
                //标记最后一个返回元素为-1,因为已经删掉了
                lastRet = -1;
                //重置expectedModCount
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        //为每个剩余元素执行给定的操作,实现Consumer接口
        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> consumer) {
            Objects.requireNonNull(consumer);
            final int size = ArrayList.this.size;
            int i = cursor;
            if (i >= size) {
                return;
            }
            final Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length) {
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[i++]);
            }
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        }

        //检查操作时列表是否被修改了
        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    /**
     * An optimized version of AbstractList.ListItr
     * AbstractList.ListItr的优化版本
     */
    private class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        @SuppressWarnings("unchecked")
        public E previous() {
            checkForComodification();
            int i = cursor - 1;
            if (i < 0)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[lastRet = i];
        }

        public void set(E e) {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.set(lastRet, e);
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        public void add(E e) {
            checkForComodification();

            try {
                int i = cursor;
                ArrayList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a view of the portion of this list between the specified
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
     * empty.)  The returned list is backed by this list, so non-structural
     * changes in the returned list are reflected in this list, and vice-versa.
     * The returned list supports all of the optional list operations.
     *
     * <p>This method eliminates the need for explicit range operations (of
     * the sort that commonly exist for arrays).  Any operation that expects
     * a list can be used as a range operation by passing a subList view
     * instead of a whole list.  For example, the following idiom
     * removes a range of elements from a list:
     * <pre>
     *      list.subList(from, to).clear();
     * </pre>
     * Similar idioms may be constructed for {@link #indexOf(Object)} and
     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
     * {@link Collections} class can be applied to a subList.
     *
     * <p>The semantics of the list returned by this method become undefined if
     * the backing list (i.e., this list) is <i>structurally modified</i> in
     * any way other than via the returned list.  (Structural modifications are
     * those that change the size of this list, or otherwise perturb it in such
     * a fashion that iterations in progress may yield incorrect results.)
     *
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public List<E> subList(int fromIndex, int toIndex) {
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, 0, fromIndex, toIndex);
    }

    static void subListRangeCheck(int fromIndex, int toIndex, int size) {
        if (fromIndex < 0)
            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
        if (toIndex > size)
            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
        if (fromIndex > toIndex)
            throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                               ") > toIndex(" + toIndex + ")");
    }

    private class SubList extends AbstractList<E> implements RandomAccess {
        private final AbstractList<E> parent;
        private final int parentOffset;
        private final int offset;
        int size;

        SubList(AbstractList<E> parent,
                int offset, int fromIndex, int toIndex) {
            this.parent = parent;
            this.parentOffset = fromIndex;
            this.offset = offset + fromIndex;
            this.size = toIndex - fromIndex;
            this.modCount = ArrayList.this.modCount;
        }

        public E set(int index, E e) {
            rangeCheck(index);
            checkForComodification();
            E oldValue = ArrayList.this.elementData(offset + index);
            ArrayList.this.elementData[offset + index] = e;
            return oldValue;
        }

        public E get(int index) {
            rangeCheck(index);
            checkForComodification();
            return ArrayList.this.elementData(offset + index);
        }

        public int size() {
            checkForComodification();
            return this.size;
        }

        public void add(int index, E e) {
            rangeCheckForAdd(index);
            checkForComodification();
            parent.add(parentOffset + index, e);
            this.modCount = parent.modCount;
            this.size++;
        }

        public E remove(int index) {
            rangeCheck(index);
            checkForComodification();
            E result = parent.remove(parentOffset + index);
            this.modCount = parent.modCount;
            this.size--;
            return result;
        }

        protected void removeRange(int fromIndex, int toIndex) {
            checkForComodification();
            parent.removeRange(parentOffset + fromIndex,
                               parentOffset + toIndex);
            this.modCount = parent.modCount;
            this.size -= toIndex - fromIndex;
        }

        public boolean addAll(Collection<? extends E> c) {
            return addAll(this.size, c);
        }

        public boolean addAll(int index, Collection<? extends E> c) {
            rangeCheckForAdd(index);
            int cSize = c.size();
            if (cSize==0)
                return false;

            checkForComodification();
            parent.addAll(parentOffset + index, c);
            this.modCount = parent.modCount;
            this.size += cSize;
            return true;
        }

        public Iterator<E> iterator() {
            return listIterator();
        }

        public ListIterator<E> listIterator(final int index) {
            checkForComodification();
            rangeCheckForAdd(index);
            final int offset = this.offset;

            return new ListIterator<E>() {
                int cursor = index;
                int lastRet = -1;
                int expectedModCount = ArrayList.this.modCount;

                public boolean hasNext() {
                    return cursor != SubList.this.size;
                }

                @SuppressWarnings("unchecked")
                public E next() {
                    checkForComodification();
                    int i = cursor;
                    if (i >= SubList.this.size)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i + 1;
                    return (E) elementData[offset + (lastRet = i)];
                }

                public boolean hasPrevious() {
                    return cursor != 0;
                }

                @SuppressWarnings("unchecked")
                public E previous() {
                    checkForComodification();
                    int i = cursor - 1;
                    if (i < 0)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i;
                    return (E) elementData[offset + (lastRet = i)];
                }

                @SuppressWarnings("unchecked")
                public void forEachRemaining(Consumer<? super E> consumer) {
                    Objects.requireNonNull(consumer);
                    final int size = SubList.this.size;
                    int i = cursor;
                    if (i >= size) {
                        return;
                    }
                    final Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length) {
                        throw new ConcurrentModificationException();
                    }
                    while (i != size && modCount == expectedModCount) {
                        consumer.accept((E) elementData[offset + (i++)]);
                    }
                    // update once at end of iteration to reduce heap write traffic
                    lastRet = cursor = i;
                    checkForComodification();
                }

                public int nextIndex() {
                    return cursor;
                }

                public int previousIndex() {
                    return cursor - 1;
                }

                public void remove() {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        SubList.this.remove(lastRet);
                        cursor = lastRet;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void set(E e) {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        ArrayList.this.set(offset + lastRet, e);
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void add(E e) {
                    checkForComodification();

                    try {
                        int i = cursor;
                        SubList.this.add(i, e);
                        cursor = i + 1;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                final void checkForComodification() {
                    if (expectedModCount != ArrayList.this.modCount)
                        throw new ConcurrentModificationException();
                }
            };
        }

        public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, offset, fromIndex, toIndex);
        }

        private void rangeCheck(int index) {
            if (index < 0 || index >= this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private void rangeCheckForAdd(int index) {
            if (index < 0 || index > this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+this.size;
        }

        private void checkForComodification() {
            if (ArrayList.this.modCount != this.modCount)
                throw new ConcurrentModificationException();
        }

        public Spliterator<E> spliterator() {
            checkForComodification();
            return new ArrayListSpliterator<E>(ArrayList.this, offset,
                                               offset + this.size, this.modCount);
        }
    }

    @Override
    public void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
     * list.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
     * Overriding implementations should document the reporting of additional
     * characteristic values.
     *
     * @return a {@code Spliterator} over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new ArrayListSpliterator<>(this, 0, -1, 0);
    }

    /** Index-based split-by-two, lazily initialized Spliterator */
    static final class ArrayListSpliterator<E> implements Spliterator<E> {

        /*
         * If ArrayLists were immutable, or structurally immutable (no
         * adds, removes, etc), we could implement their spliterators
         * with Arrays.spliterator. Instead we detect as much
         * interference during traversal as practical without
         * sacrificing much performance. We rely primarily on
         * modCounts. These are not guaranteed to detect concurrency
         * violations, and are sometimes overly conservative about
         * within-thread interference, but detect enough problems to
         * be worthwhile in practice. To carry this out, we (1) lazily
         * initialize fence and expectedModCount until the latest
         * point that we need to commit to the state we are checking
         * against; thus improving precision.  (This doesn‘t apply to
         * SubLists, that create spliterators with current non-lazy
         * values).  (2) We perform only a single
         * ConcurrentModificationException check at the end of forEach
         * (the most performance-sensitive method). When using forEach
         * (as opposed to iterators), we can normally only detect
         * interference after actions, not before. Further
         * CME-triggering checks apply to all other possible
         * violations of assumptions for example null or too-small
         * elementData array given its size(), that could only have
         * occurred due to interference.  This allows the inner loop
         * of forEach to run without any further checks, and
         * simplifies lambda-resolution. While this does entail a
         * number of checks, note that in the common case of
         * list.stream().forEach(a), no checks or other computation
         * occur anywhere other than inside forEach itself.  The other
         * less-often-used methods cannot take advantage of most of
         * these streamlinings.
         */

        private final ArrayList<E> list;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /** Create new spliterator covering the given  range */
        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                             int expectedModCount) {
            this.list = list; // OK if null unless traversed
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }

        private int getFence() { // initialize fence to size on first use
            int hi; // (a specialized variant appears in method forEach)
            ArrayList<E> lst;
            if ((hi = fence) < 0) {
                if ((lst = list) == null)
                    hi = fence = 0;
                else {
                    expectedModCount = lst.modCount;
                    hi = fence = lst.size;
                }
            }
            return hi;
        }

        public ArrayListSpliterator<E> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null : // divide range in half unless too small
                new ArrayListSpliterator<E>(list, lo, index = mid,
                                            expectedModCount);
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            if (action == null)
                throw new NullPointerException();
            int hi = getFence(), i = index;
            if (i < hi) {
                index = i + 1;
                @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            int i, hi, mc; // hoist accesses and checks from loop
            ArrayList<E> lst; Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null && (a = lst.elementData) != null) {
                if ((hi = fence) < 0) {
                    mc = lst.modCount;
                    hi = lst.size;
                }
                else
                    mc = expectedModCount;
                if ((i = index) >= 0 && (index = hi) <= a.length) {
                    for (; i < hi; ++i) {
                        @SuppressWarnings("unchecked") E e = (E) a[i];
                        action.accept(e);
                    }
                    if (lst.modCount == mc)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }

        public long estimateSize() {
            return (long) (getFence() - index);
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

    @Override
    public boolean removeIf(Predicate<? super E> filter) {
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

        // shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k=newSize; k < size; k++) {
                elementData[k] = null;  // Let gc do its work
            }
            this.size = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void replaceAll(UnaryOperator<E> operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
}

 

ArrayList--源码阅读

标签:ngui   等于   hang   protect   dal   containe   contains   取消   change   

原文地址:http://www.cnblogs.com/Jeb-Sun/p/6822693.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!