SQL SERVER提供了两种索引:聚集索引和非聚集索引。其中聚集索引表示表中存储的数据按照索引的顺序存储,检索效率比非聚集索引高,但对数据更新影响较大。非聚集索引表示数据存储在一个地方,索引存储在另一个地方,索引带有指针指向数据的存储位置,非聚集索引检索效率比聚集索引低,但对数据更新影响较小。
聚集索引和非聚集索引的区别:
汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。
两者的根本区别是表记录的排列顺序和与索引的排列顺序是否一致。
1.聚集索引一个表只能有一个,而非聚集索引一个表可以存在多个。
2.聚集索引存储记录是物理上连续存在,而非聚集索引是逻辑上的连续,物理存储并不连续。
3.聚集索引查询数据速度快,插入数据速度慢;非聚集索引反之。
聚集索引和非聚集索引的根本区别是表记录的排列顺序和与索引的排列顺序是否一致,
聚集索引表记录的排列顺序与索引的排列顺序一致,优点是查询速度快,因为一旦具有第一个索引值的纪录被找到,具有连续索引值的记录也一定物理的紧跟其后。
聚集索引的缺点是对表进行修改速度较慢,这是为了保持表中的记录的物理顺序与索引的顺序一致,而把记录插入到数据页的相应位置,必须在数据页中进行数据重排,降低了执行速度。
非聚集索引指定了表中记录的逻辑顺序,但记录的物理顺序和索引的顺序不一致,聚集索引和非聚集索引都采用了B+树的结构,但非聚集索引的叶子层并不与实际的数据页相重叠,而采用叶子层包含一个指向表中的记录在数据页中的指针的方式。非聚集索引比聚集索引层次多,添加记录不会引起数据顺序的重组。
聚集索引:物理存储按照索引排序
非聚集索引:物理存储不按照索引排序
聚集索引在插入数据时速度要慢(时间花费在“物理存储的排序”上,也就是首先要找到位置然后插入),但查询数据比非聚集数据的速度快
--------------------
SQL SERVER提供了两种索引:聚集索引和非聚集索引。其中聚集索引表示表中存储的数据按照索引的顺序存储,检索效率比非聚集索引高,但对数据更新影响较大。非聚集索引表示数据存储在一个地方,索引存储在另一个地方,索引带有指针指向数据的存储位置,非聚集索引检索效率比聚集索引低,但对数据更新影响较小。
聚集索引确定表中数据的物理顺序。聚集索引类似于电话簿,后者按姓氏排列数据。由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引。但该索引可以包含多个列(组合索引),就像电话簿按姓氏和名字进行组织一样。
定义聚集索引键时使用的列越少越好。
? 包含大量非重复值的列。
.? 使用下列运算符返回一个范围值的查询:BETWEEN、>、>=、< 和 <=。
? 被连续访问的列。
? 回大型结果集的查询。
? 经常被使用联接或 GROUP BY 子句的查询访问的列;一般来说,这些是外键列。对 ORDER BY 或 GROUP BY 子句中指定的列进行索引,可以使 SQL Server 不必对数据进行排序,因为这些行已经排序。这样可以提高查询性能。
? OLTP 类型的应用程序,这些程序要求进行非常快速的单行查找(一般通过主键)。应在主键上创建聚集索引。
? 频繁更改的列 。这将导致整行移动(因为 SQL Server 必须按物理顺序保留行中的数据值)。这一点要特别注意,因为在大数据量事务处理系统中数据是易失的。
? 宽键 。来自聚集索引的键值由所有非聚集索引作为查找键使用,因此存储在每个非聚集索引的叶条目内。
非聚集索引中的项目按索引键值的顺序存储,而表中的信息按另一种顺序存储(这可以由聚集索引规定)。对于非聚集索引,可以为在表非聚集索引中查找数据时常用的每个列创建一个非聚集索引。有些书籍包含多个索引。例如,一本介绍园艺的书可能会包含一个植物通俗名称索引,和一个植物学名索引,因为这是读者查找信息的两种最常用的方法。
其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。
第一:聚集索引的约束是唯一性,是否要求字段也是唯一的呢?
分析:如果认为是的朋友,可能是受系统默认设置的影响,一般我们指定一个表的主键,如果这个表之前没有聚集索引,同时建立主键时候没有强制指定使用非聚集索引,SQL会默认在此字段上创建一个聚集索引,而主键都是唯一的,所以理所当然的认为创建聚集索引的字段也需要唯一。
结论:聚集索引可以创建在任何一列你想创建的字段上,这是从理论上讲,实际情况并不能随便指定,否则在性能上会是恶梦。
第二:主键就是聚集索引
这样有时会对聚集索引的一种浪费。虽然SQL SERVER默认是在主键上建立聚集索引的。但是由于聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。
从我们前面谈到的聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。在实际应用中,因为 ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。这就使让ID号这个主键作为聚集索引成为一种资源浪费。其次,让每个ID号都不同的字段作为聚集索引也不符合“大数目的不同值情况下不应建立聚合索引”规则;当然,这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。
第三:是不是聚集索引就一定要比非聚集索引性能优呢?
如果想查询学分在60-90之间的学生的学分以及姓名,在学分上创建聚集索引是否是最优的呢?
答:否。既然只输出两列,我们可以在学分以及学生姓名上创建联合非聚集索引,此时的索引就形成了覆盖索引,即索引所存储的内容就是最终输出的数据,这种索引在比以学分为聚集索引做查询性能更好。
第四:在数据库中通过什么描述聚集索引与非聚集索引的?
索引是通过二叉树的形式进行描述的,我们可以这样区分聚集与非聚集索引的区别:聚集索引的叶节点就是最终的数据节点,而非聚集索引的叶节仍然是索引节点,但它有一个指向最终数据的指针。
第五:在主键是创建聚集索引的表在数据插入上为什么比主键上创建非聚集索引表速度要慢?
有了上面第四点的认识,我们分析这个问题就有把握了,在有主键的表中插入数据行,由于有主键唯一性的约束,所以需要保证插入的数据没有重复。我们来比较下主键为聚集索引和非聚集索引的查找情况:聚集索引由于索引叶节点就是数据页,所以如果想检查主键的唯一性,需要遍历所有数据节点才行,但非聚集索引不同,由于非聚集索引上已经包含了主键值,所以查找主键唯一性,只需要遍历所有的索引页就行,这比遍历所有数据行减少了不少IO消耗。这就是为什么主键上创建非聚集索引比主键上创建聚集索引在插入数据时要快的真正原因。
聚集索引:物理存储按照索引排序
非聚集索引:物理存储不按照索引排序
聚集索引在插入数据时速度要慢(时间花费在“物理存储的排序”上,也就是首先要找到位置然后插入),但查询数据比非聚集数据的速度快
索引是通过二叉树的数据结构来描述的,我们可以这么理解聚簇索引:索引的叶节点就是数据节点。而非聚簇索引的叶节点仍然是索引节点,只不过有一个指针指向对应的数据块。
转自:http://www.cnblogs.com/lenther2002/p/6763336.html
原文地址:http://www.cnblogs.com/sevene/p/6831515.html