标签:row 解释 gif for 依次 不同 工作 指定 ima
在Oracle中,如果要实现行列转换,较为常见的是用DECODE和CASE语句。对于简单的行列转行,DECODE和CASE语句尚能应付。在逻辑比较复杂,分组聚合较多的场景中,DECODE和CASE语句则力有不逮。而pivot则可完美解决这一切。
首先,我们来看看Oracle对于其的解释:
可见,pivot是数据仓库中的关键技术,它利用交叉查询(crosstabulation query)将行转换为列。
基本语法如下:
SELECT .... FROM <table-expr> PIVOT ( aggregate-function(<column>) FOR <pivot-column> IN (<value1>, <value2>,..., <valuen>) ) AS <alias> WHERE .....
下面我们来通过具体的案例对其进行阐述。
首先,构造案例所需的数据,
1> 创建视图,以EMP表的数据作为源数据。
CREATE VIEW emp_view AS SELECT deptno,job,to_char(hiredate,‘yyyy‘) hiredate, count(*) cnt,sum(sal) sum_sal FROM emp GROUP BY deptno,job,to_char(hiredate,‘yyyy‘);
其中,deptno为部门号,job为工作的类型(即工种),hiredate为雇佣的日期,cnt为特定部门,特定工种在特定年份雇佣的员工的总数,sum_sal为特定部门,特定工种,特定年份雇佣的员工的工资的总和。
2> 视图的数据如下:
SQL> select * from emp_view; DEPTNO JOB HIRE CNT SUM_SAL ---------- --------- ---- ---------- ---------- 20 CLERK 1980 1 800 20 ANALYST 1981 1 3000 20 ANALYST 1987 1 3000 30 CLERK 1981 1 950 30 MANAGER 1981 1 2850 10 MANAGER 1981 1 2450 30 SALESMAN 1981 4 5600 20 MANAGER 1981 1 2975 10 PRESIDENT 1981 1 5000 10 CLERK 1982 1 1300 20 CLERK 1987 1 1100 11 rows selected.
应用场景一:
基本的Pivot转换
例1:
SELECT * FROM ( SELECT deptno,hiredate,cnt FROM emp_view ) PIVOT (SUM(cnt) FOR hiredate IN (‘1980‘ AS "1980",‘1981‘ AS "1981", ‘1982‘ AS "1982",‘1987‘ AS "1987")) ORDER BY deptno; DEPTNO 1980 1981 1982 1987 ---------- ---------- ---------- ---------- ---------- 10 2 1 20 1 2 2 30 6 3 rows selected.
例2:
SELECT * FROM ( SELECT deptno,job,cnt FROM emp_view ) PIVOT (SUM(cnt) FOR job IN (‘CLERK‘,‘ANALYST‘,‘MANAGER‘,‘SALESMAN‘,‘PRESIDENT‘)) ORDER BY deptno; DEPTNO ‘CLERK‘ ‘ANALYST‘ ‘MANAGER‘ ‘SALESMAN‘ ‘PRESIDENT‘ ---------- ---------- ---------- ---------- ---------- ----------- 10 1 1 1 20 2 2 1 30 1 1 4 3 rows selected.
两例以不同的列进行统计,前者是hiredate,后者是job。
除此之外,前者用了别名,后面没有用别名,两者的显示效果也是不一样的。
应用场景二:
对多列进行Pivot转换
SELECT * FROM ( SELECT deptno,job,hiredate,cnt FROM emp_view ) PIVOT (SUM(cnt) FOR (job,hiredate) IN ((‘CLERK‘,‘1980‘) AS clerk_1980, (‘CLERK‘,‘1981‘) AS clerk_1981, (‘ANALYST‘,‘1987‘) AS analyst_1987, (‘MANAGER‘,‘1981‘) AS manager_1981 ) ) ORDER by deptno; DEPTNO CLERK_1980 CLERK_1981 ANALYST_1987 MANAGER_1981 ---------- ---------- ---------- ------------ ------------ 10 1 20 1 1 1 30 1 1 3 rows selected.
限于篇幅,FOR (job,hiredate) IN语句中没有列出更多组合,只列出了四组,当然,我们可以根据实际场景需要罗列更多的组合。
从本例中可以看出,对两个列进行Pivot转换可从三个维度呈现统计结果。
应用场景三:
用Pivot实现多个聚合
SELECT * FROM ( SELECT deptno,hiredate,cnt,sum_sal FROM emp_view ) PIVOT ( SUM(cnt) AS cnt, SUM(sum_sal) AS sum_sal FOR hiredate IN (‘1980‘,‘1981‘,‘1982‘,‘1987‘)) ORDER BY deptno; DEPTNO ‘1980‘_CNT ‘1980‘_SUM_SAL ‘1981‘_CNT ‘1981‘_SUM_SAL ‘1982‘_CNT ‘1982‘_SUM_SAL ‘1987‘_CNT ‘1987‘_SUM_SAL ---------- ---------- -------------- ---------- -------------- ---------- -------------- ---------- -------------- 10 2 7450 1 1300 20 1 800 2 5975 2 4100 30 6 9400 3 rows selected.
‘1981‘_CNT指的是1981年雇佣的员工的总数,‘1981‘_SUM_SAL指的是1981年雇佣员工所开出的工资。
具体到本例中,即1981年10号部门招聘了2位员工,开出的工资合计为7450元,20号部门招聘了2位员工,开出的工资合计为5975元,30号部门招聘了6名员工,开出的工资合计为9400元,依次类推。
既然有pivot将行转换为列,同样也有unpivot操作将聚合后的列转换为行。
UNPIVOT
以上述应用场景三的结果作为源数据进行操作
CREATE TABLE T1 AS SELECT * FROM ( SELECT deptno,hiredate,cnt,sum_sal FROM emp_view ) PIVOT ( SUM(cnt) AS cnt, SUM(sum_sal) AS sum_sal FOR hiredate IN (‘1980‘ AS "1980",‘1981‘ AS "1981", ‘1982‘ AS "1982",‘1987‘ AS "1987")) ORDER BY deptno
表T1的结果为:
SQL> select * from t1; DEPTNO 1980_CNT 1980_SUM_SAL 1981_CNT 1981_SUM_SAL 1982_CNT 1982_SUM_SAL 1987_CNT 1987_SUM_SAL ---------- ---------- ------------ ---------- ------------ ---------- ------------ ---------- ------------ 10 2 7450 1 1300 20 1 800 2 5975 2 4100 30 6 9400 3 rows selected.
首先进行一维unpivot
SELECT deptno,DECODE(hiredate,‘1980_CNT‘,‘1980‘,‘1981_CNT‘,‘1981‘,‘1982_CNT‘,‘1982‘,‘1987_CNT‘,‘1987‘) AS hiredate,cnt FROM T1 UNPIVOT INCLUDE NULLS ( cnt FOR hiredate IN ("1980_CNT","1981_CNT","1982_CNT","1987_CNT")); DEPTNO HIRE CNT ---------- ---- ---------- 10 1980 10 1981 2 10 1982 1 10 1987 20 1980 1 20 1981 2 20 1982 20 1987 2 30 1980 30 1981 6 30 1982 30 1987 12 rows selected.
输出的结果为不同部门在不同年份的雇佣人数,
注意:上述SQL语句中UNPIVOT后加了INCLUDE NULLS,当然也可以指定为EXCLUDE NULLS,即排除cnt为空的值,如果不指定,则默认为EXCLUDE NULLS。
UNPIVOT后不指定INCLUDE NULLS的输入结果为:
DEPTNO HIRE CNT ---------- ---- ---------- 10 1981 2 10 1982 1 20 1980 1 20 1981 2 20 1987 2 30 1981 6 6 rows selected.
下面,我们再进行二维unpivot
SELECT deptno,hiredate,cnt,sum_sal FROM T1 UNPIVOT ( (cnt,sum_sal) FOR hiredate IN (("1980_CNT","1980_SUM_SAL") AS 1980, ("1981_CNT","1981_SUM_SAL") AS 1981, ("1982_CNT","1982_SUM_SAL") AS 1982, ("1987_CNT","1987_SUM_SAL") AS 1987)); DEPTNO HIREDATE CNT SUM_SAL ---------- ---------- ---------- ---------- 10 1981 2 7450 10 1982 1 1300 20 1980 1 800 20 1981 2 5975 20 1987 2 4100 30 1981 6 9400 6 rows selected.
输入结果为T1表列转行的结果。
参考文档:
SQL for Analysis and Reporting
标签:row 解释 gif for 依次 不同 工作 指定 ima
原文地址:http://www.cnblogs.com/xieweikai/p/6838261.html